# Agilent 8753 to ENA Code Conversion Assistant <br> Operation Manual 

First Edition

## Agilent Technologies

Agilent Part No. N/A
November 2002

Printed in Japan

## Notices

The information contained in this document is subject to change without notice.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of the Agilent Technologies.

## Agilent Technologies Japan, Ltd.

## Kobe Instrument Division

1-3-2, Murotani, Nishi-Ku, Kobe-shi, Hyogo, 651-2241 Japan
Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Visual Basic are U.S. registered trademarks of Microsoft Corporation.
© Copyright Agilent Technologies Japan, Ltd. 2002

## License Terms

Use of this software is subject to the Agilent software license terms set forth below. Using the software indicates your acceptance of these license terms. If you do not accept these license terms, you may return the software for a full refund. If the software is bundled with another product, you may return the entire unused product for a full refund.

## - LICENSE GRANT

Agilent grants you a license to use a reasonable number of copies of the Software solely in conjunction with your Use of the instrument[s] shipped with the Software. "Use" means storing, loading, installing, executing or displaying the Software. You may not modify the Software or disable any licensing or control features of the Software. If the license is for "demonstration" or "evaluation" purposes, you may only Use the Software for temporary evaluation in deciding whether to purchase the associated Agilent hardware product. No rights to distribute the Software are granted herein.

- OWNERSHIP

The Software is owned and copyrighted by Agilent or its third party suppliers. Your license confers no title to, or ownership in, the Software and is not a sale of any rights in the Software. Agilent's third party suppliers may protect their rights in the event of any violation of these License Terms.

- COPY AND ADAPTATIONS

You may only make copies or adaptations of the Software for archival purposes, or when copying or adaptation is an essential step in the authorized Use of the Software. You must reproduce all copyright notices found in the original Software on all copies or adaptations. You may not copy the Software onto any public network.

## - NO DISASSEMBLY OR DECRYPTION

You may not disassemble or decompile the Software unless Agilent's prior written
consent is obtained. In some jurisdictions, Agilent's consent may not be required for limited disassembly or decompilation. Upon request, you will provide Agilent with reasonably detailed information regarding any disassembly or decompilation. You may not decrypt the Software unless decryption is a necessary part of the operation of the Software.

## - TRANSFER

Your license will automatically terminate upon any transfer of the Software. Upon transfer, you must deliver the Software, including any copies and related documentation, to the transferee. The transferee must accept these License Terms as a condition of the transfer.

## - TERMINATION

Agilent may terminate your license upon notice, for failure to comply with any of these License Terms. Upon termination, you must immediately destroy the Software, together with all copies, adaptations and merged portions in any form.

## - MEDIA

Agilent warrants the media upon which this product is recorded to be free from defects in materials and workmanship under normal use for a period of NINETY (90) DAYS from the date of purchase. In the event any media prove to be defective during the warranty period, Customer's remedy shall be to return the media to Agilent for replacement. Should Agilent be unable to replace the media within a reasonable amount of time, Customer's alternate remedy shall be a refund of the purchase price upon return of the product and all copies.

## - NOTICE OF WARRANTY CLAIMS

Customer must notify Agilent in writing of any warranty claim not later than thirty (30) days after the expiration of the warranty period.

## - LIMITATION OF WARRANTY

Agilent makes no other warranty, express or implied, whether written or oral with respect to this product and specifically disclaims any implied warranty or condition of merchantability, fitness for a particular purpose or satisfactory quality.

## - EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED ABOVE ARE CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL AGILENT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFIT) WHETHER BASED ON WARRANTY, CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

## - WARRANTY SERVICE

Warranty service may be obtained from the nearest Agilent sales office or other location indicated in the owner's manual or service booklet.

## Manual Printing History

The manual's printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates that are incorporated at reprint do not cause the date to change.) The manual part number changes when extensive technical changes are incorporated.
August 2002 Preliminary Edition
November 2002 First Edition

1. Overview
Overview ..... 8
2. Installation
Installation ..... 10
Minimum System Requirements ..... 10
Installation ..... 10
3. Basic Operation
Components of the Conversion Assistant ..... 18
Loading the Source File ..... 20
Configuring Conversion Settings ..... 22
Opening Configuration Window ..... 22
Setting up Channel and Trace Conversion ..... 22
Adding Comment after Converted Line ..... 23
Set Configuration to Default ..... 23
Conversion ..... 25
Converting Each Command ..... 25
Converting All Commands Highlighted in Blue ..... 27
Undoing Conversion ..... 29
Defining Programming Language Configuration ..... 30
Changing Data File ..... 32
Changing Conversion Data File ..... 32
Changing Highlight Data File ..... 33
4. General Flow of Code Conversion
General Flow of Code Conversion ..... 36
Step 1: Understand your 8753ES program ..... 38
Step 2: Understand the differences in channel and trace concepts between the 8753ES and the ENA ..... 38
Step 3: Understand the display settings of the 8753ES program ..... 38
Step 4: Convert codes for the display settings ..... 39
Step 5: Convert the other codes. ..... 40
Step 6: Debugging ..... 41
5. Tips for the 8753ES Code Conversion
Taking Advantage of Migration Guide and ENA Programmer's Guide ..... 44
Differences in Channel and Trace Concepts between 8753ES and ENA ..... 45
How to Convert Commands for Display Settings ..... 47
Making It Easier to Find 8753ES Commands ..... 48
How to Convert Commands Highlighted in Blue ..... 49
How to Convert Commands Highlighted in Yellow ..... 49
How to Convert Commands Highlighted in Red ..... 49
How to Convert the OPC? Command ..... 50
How to Convert the PRES Command ..... 50
How to Convert When Variables Specify Command Parameters. ..... 51
How to Convert the SING Command ..... 52
How to Convert a Frequency Sweep List Table ..... 52
Conversion Example for a Frequency Sweep List Table ..... 52

## Contents

How to Export a Frequency Sweep List Table ..... 54
How to Convert a Limit Table ..... 55
Limit Test ..... 55
How to Export a Limit Table ..... 57
How to Convert a Power Sensor Calibration Factor Table ..... 57
How to Convert a Power Loss Table ..... 57
How to Convert Program Code for Calibration ..... 57
Conversion Example for Full 2-Port Calibration ..... 57
How to Convert Program Code for Save/Recall Functions ..... 62
How to Read Instrument Model Number ..... 62
How to Read Firmware Revision Number ..... 62
How to Read Serial Number. ..... 63
How to Convert a Command Containing a Unit ..... 63
How to Convert a Binary Data Transfer Program ..... 63
How to Read the Active Channel and Trace ..... 63
Difference in Marker Couple/Uncouple ..... 64
How to Convert a Query on 8753ES to Multiple Queries on ENA ..... 64
How to Convert Chop/Alternate Sweep Mode ..... 64
How to Convert Color Setting ..... 65
6. Comparing functions of the 8753ES and the E5070B/E5071B
Important Functional Differences. ..... 68
Channel and Trace Concepts ..... 68
Measurement Parameters ..... 68
Test Port Output Ranges ..... 68
Sweep Function ..... 69
Calibration ..... 70
Trigger System ..... 71
Data Flow ..... 72
Reading/Writing Data ..... 73
Screen Display and Marker Functions ..... 74
Math Operation Functions on Traces ..... 74
Device Test Functions ..... 74
Analytical Functions ..... 74
Save/Recall ..... 75
Test Sequence Program ..... 75
Outputting to a Printer/Plotter. ..... 75
GPIB Interface ..... 75
LAN Interface ..... 75
Other Functions ..... 75
Comparing Functions ..... 76
7. Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function) ..... 86
8753 ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded) ..... 117

## 1 <br> Overview

This chapter gives an overview of the Agilent 8753 to ENA Code Conversion Assistant.

## Overview

The Agilent 8753ES to ENA Code Conversion Assistant is a software tool to help you convert the control programs of the 8753ES into programs that can control the ENA Series RF Network Analyzers.

The Conversion Assistant highlights 8753ES GPIB commands in the program source file according to difficulty and displays useful information for converting the source code. You can covert the GPIB command if there is a corresponding conversion command on the ENA.

Conversion Assistant consists of the following files.

| File Name | Description |
| :--- | :--- |
| eme327e.exe | EmEditor Install Shield |
| AgtCCA.msi | Conversion Assistant Plug-in Install Shield |
| 8753_E507x_r100.zip | Archive of conversion data file and highlight data file |
| sample8753.txt | Sample Program: This is used for the conversion <br> example used in this manual |
| sample8753_done.txt | Sample Program: The result of converting <br> sample8753.txt |
| conv_assist.pdf | Conversion Assistant Operation Manual (PDF <br> formatted file) |

## Contents of 8753_E507x_r100.zip

| 8753_E507x_r100.tbl ${ }^{* 1}$ | Conversion data file |
| :--- | :--- |
| $8753 \_E 507 x \_r 100$. esy $^{* 1}$ | Basic Highlight data file: This file is under the <br> 8753_E507x folder |
| $8753 \_E 507 x \_r 100 \_$c++.esy ${ }^{* 1}$ | Highlight data file for C++: This file is under the <br> $8753 \_E 507 x$ <br> folder |
| 8753_E507x_r100_rmb.esy ${ }^{* 1}$ | Highlight data file for HP BASIC and HT BASIC: <br> This file is under the 8753_E507x folder |
| 8753_E507x_r100_vb.esy ${ }^{* 1}$ | Highlight data file for Visual Basic: This file is under <br> the 8753_E507x folder |
| readme.txt | Document for archive |

*1. "r100" means the revision is 1.00 . The revision numbers of the conversion data file and the highlight data file must be the same.

## 2 Installation

This chapter explains how to install the Agilent 8753ES-to-ENA Code Conversion Assistant.

## Installation

## Minimum System Requirements

PC
AT-Compatible
OS
Windows 98SE, Windows NT, Windows 2000 or Windows XP

## Installation

You need to install the following programs to run the Agilent Code Conversion Assistant.

- EmEditor (eme327e.exe)
- Conversion Assistant Plug-in Install Shield (AgtCCA .msi)
- Conversion Data file (Extension tbl)
- Highlight Data File (Extension esy)


## NOTE

The EmEditor is shareware. To continue using EmEditor v3 more than 30 days, you must register your copy.

Step 1. Execute eme327e. exe to run the EmEditor Install Shield (Figure 2-1).

EmEditor Install Shield


Step 2. Install the EmEditor according to the installer's instructions.
Step 3. Execute AgtCCA. ms i to run the Code Conversion Assistant Install Shield (Figure 2-2).

Figure 2-2 Install Shield Window


## NOTE

Select Remove and proceed with the operation when the window in Figure 2-3 appears. Then execute AgtCCA.msi again.

Figure 2-3 Install Shield Window for Replacement


Step 4. Install the Plug-in according to the installer's instructions.
Step 5. Extract the data archive file (8753_E507x_r100.zip) into the plug-in folder.
The default setting is $C: \$ Program Files $\backslash$ EmEditor3 $\backslash P l u g I n s \backslash A g i l e n t . ~$

## NOTE

The above procedure creates a folder named 8753_E507x. The highlight data files are stored in this folder, but these files can be moved.

Step 6. Click the Start button, then click on EmEditor v3 to run the EmEditor.
Step 7. Click Plug-ins on the EmEditor toolbar (1 in Figure 2-4).

| NOTE | If Plug-ins is not displayed, click the right button on the toolbar and select Plug-ins |
| :---: | :---: |
|  | Bar. |

## Figure 2-4

## EmEditor Toolbar


e5070bcae002

Step 9. Click the Setup button (1 in Figure 2-5) in the main window.
Figure 2-5 Setup Button in Main Window


Step 10. Select the conversion data table in the Conversion Table pull-down menu ( 1 in Figure 2-6), then the message box appears. Click OK to close the message box.

Figure 2-6
Conversion Table Pull-downown Menu


Step 11. Click the Close button (2 in Figure 2-6). In Figure 2-6, "8753_E507x_r100" is selected. The last 4 characters indicate the revision. In this case, the revision is 1.00 .

Step 12. Click the Close button in the main window (2 in Figure 2-5).
Step 13. Use the Tools menu (1 in Figure 2-7) and then the Select Configuration sub-menu (2 in Figure 2-7) to select the programming language for configuration.

NOTE Click Define Configuration to create a new programming language configuration and then import the highlight data file. This procedure is described in "Defining
$\qquad$ Programming Language Configuration" on page 30.

Figure 2-7
Programming Language Selection


Step 14. Click on Tools on the EmEditor toolbar.
Step 15. Select Properties for Current Configuration under the Tools menu ( 1 in Figure 2-8).

Figure 2-8

## Tools Menu



Step 16. Click the Highlight (1) tab.
Step 17. Click Import ( 1 in Figure 2-9) and navigate to the highlight data file (Table 2-1). The file name is displayed at the top of the Highlight Words frame. Then Click OK ( 2 in Figure 2-9) to close the window.

The default setting is C: \Program Files $\backslash$ EmEditor3\PlugIns $\backslash$ Agilent $\backslash 8753$ E 507x.

The revision numbers of the conversion data file and the highlight data file must be same. If they are not the same, the highlight and the conversion are not synchronized.

Figure 2-9 Property Window


Table 2-1 Highlight Data Files

| File Name | Description |
| :---: | :---: |
| 8753_E507x_r100.esy ${ }^{* 1}$ | Basic highlight data files for highlighting 8753ES GPIB Commands |
| 8753_E507x_r100_c++.esy ${ }^{* 1}$ | Highlight data files for $\mathrm{C}++$; words in the following comment strings are not highlighted: <br> - Between "/*" and "*/" <br> - After "//" in a line. |

Table 2-1 Highlight Data Files

| File Name | Description |
| :--- | :--- |
| $8753 \_$E507x_r100_rmb.esy ${ }^{* 1}$ | Highlight data files for HP BASIC and HT BASIC; <br> words after exclamation points (!) in the line are not <br> highlighted |
| $8753 \_$E507x_r100_vb.esy ${ }^{* 1}$ | Highlight data files for Microsoft Visual Basic. The <br> words after single quotation (') in the line are not <br> highlighted. |

*1. "r100" indicates the revision. The revision is 1.00 in this case.

Installation
Installation

## 3 Basic Operation

This chapter explains the basic operation of the Agilent 8753 to ENA Code Conversion Assistant.

## Components of the Conversion Assistant

This section gives the name and descriptions of the various components of the Code Conversion Assistant.

Figure 3-1 EmEditor and Code Conversion Assistant Window


1. Code Conversion Assistant Icon

The icon that is clicked to run the Code Conversion Assistant.
2. Code Conversion Assistant Main Window

The main window of the Code Conversion Assistant. All operations start from this window.
3. 8753 Command Area

Displays the selected 8753ES GPIB command. If the highlight check box is checked, the command is highlighted.
4. Highlight Check Box

Selects whether to highlight the command in the source file. If the box is checked, the 8753ES GPIB command in the source file is highlighted according to the difficulty of conversion.
5. Function Overview Area

Displays a description of the 8753ES GPIB command shown in the 8753 command area.

## Basic Operation <br> Components of the Conversion Assistant

6. E507x Command Area

Displays information on the code conversion. If there is any replace command, the replacement command and the information on the conversion are displayed. If there is no replace command, the reason for it not appearing is displayed.
7. Channel Selection Area

For selecting the active channel on the 8753ES. The active channel and trace are automatically set up. If " $X$ " is selected, the tag is inserted where the channel or trace is specified.
8. Convert Option

If there are two or more conversion commands, this area is activated. Select the designation of the conversion command.
9. Find Next Button

Skips conversion and jumps to the next 8753 GPIB command when clicked.

## 10. Convert Button

Converts the 8753 GPIB command and jumps to the next 8753 GPIB command when clicked.
11. Convert All Blue Code Button

Converts all of the blue highlighted 8753 GPIB commands in the selected area in the source code when clicked.
12. Close Button

Closes the Code Conversion Assistant Main Window when clicked.

## 13. Setup Button

Displays the configuration window when clicked.

## Loading the Source File

Step 1. Select Open under the File menu (1 in Figure 3-3).
Figure 3-2
EmEditor File Menu


Step 2. Navigate to the desired directory on your PC and select the source file.
Step 3. Click the Open button.
Step 4. The 8753ES GPIB commands are highlighted. Their color indicates the difficulty for conversion as described in Table 3-1. Figure 3-3 shows an example of a window when the source file is loaded.

NOTE
Words different from 8753ES commands may be highlighted when the same words as those used in 8753ES GPIB commands appear. These may be neglected

Table 3-1
Highlight Color

| Color | Description |
| :--- | :--- |
| Blue | This command can be converted automatically <br> because there is only one choice and no user input is <br> required for conversion. |
| Yellow | There are two or more choices or special attention <br> must be given to the conversion. <br> Convert by referring to the information in the <br> function overview and the E507x area in the <br> main window. You may need to refer to the tips <br> chapter in this manual or the programmer's guide. |
| Red | Difficult to convert. Consider whether the command <br> can be deleted or whether there is any alternative. |

Figure 3-3

## Highlighted Source Code

|  |  |  |  | -回区 |
| :---: | :---: | :---: | :---: | :---: |
| Ele Edit Search View Iools Window Help |  |  |  |  |
| Plug-ins EMA |  |  |  |  |
| ```10 ASSIGN @ Agt8753 TO 727\downarrow 40 ! Initialize the system } 50 OUTPUT @Agt8753;"OPC?;PRES;"\downarrow 60 ENTER 0Agt8753;Reply\downarrow 100 ! Set up measurement and display } 120 OUTPUT @Agt8753;"COUCOFF"\downarrow 130!\downarrow``` |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 140 ! Setup Channel $1 \downarrow$ |  |  |  |  |
| 150 OUTPUT ©Agt8753; "CHAN1" $\downarrow$ |  |  |  |  |
|  |  |  |  |  |
| 170 OUTPUT @Agt8753; "S11" $\downarrow$ |  |  |  |  |
| 180 OUTPUT @ $\mathrm{Agt8753}$; "LOGM" $\downarrow$ |  |  |  |  |
| 190 OUTPUT @Agt8753; "HOLD" $\downarrow$ |  |  |  |  |
| 200 ! $\downarrow$ |  |  |  |  |
| $210!\downarrow$ |  |  |  |  |
| 220 ! $\downarrow$ |  |  |  |  |
| 230 ! $\downarrow$ |  |  |  |  |
| 240 ! Setup Channel $2 \downarrow$ |  |  |  |  |
| 250 OUTPUT ©Agt8753; "CHAN2" $\downarrow$ |  |  |  |  |
| 260 OUTPUT ©Agt8753; "AUXCOFF" $\downarrow$ |  |  |  |  |
| 270 OUTPUT Qagt8753: "S22" $\downarrow$ |  |  |  |  |
| 280 OUTPUT @Agt8753: "LOGM" $\downarrow$ |  |  |  |  |
| 290 OUTPUT @Agt8753; "HOLD" $\downarrow$ |  |  |  | $\checkmark$ |
| 1.400 bytes, 56 lines. |  | Ln 1, Col 1 | Western European |  |

If the 8753 GPIB commands are not highlighted, import the highlight data file by following the instructions for "Changing Highlight Data File" on page 33.

## Configuring Conversion Settings

To complete the conversion smoothly, you need to configure the Code Conversion Assistant. The configuration is performed in the configuration window. This section describes the following configurations.

- "Opening Configuration Window"
- "Setting up Channel and Trace Conversion"
- "Adding Comment after Converted Line"


## Opening Configuration Window

Step 1. Click [iAs) or $\stackrel{\text { HA }}{ }$ on the EmEditor toolbar, then the Code Conversion Assistant main window appears.

Step 2. Click on Setup button (13 in Figure 3-1) in the Code Conversion Assistant main window, then the configuration window appears (Figure 3-4).

Figure 3-4
Configuration Window


## Setting up Channel and Trace Conversion

The Code Conversion Assistant has a function to convert the channel and trace settings. To perform these conversions correctly, input the channel setting on the 8753ES into the Code Conversion Assistant. Refer to "Differences in Channel and Trace Concepts between 8753 ES and ENA" on page 45 for details of the channel and trace concepts.

Step 1. Check the following check boxes in the Setup frame according to the 8753ES setting, then the channel and trace correspondence between the 8753ES and the ENA is displayed to the right of the Channel Allocation frame. Skip this procedure if you translate the channel setting manually.

- Coupled Chan (1 in Figure 3-5) Check this check box if the stimulus between channels 1 and 2 is coupled by the COUCON command on the 8753ES. The default setting is checked.
- Aux Chan1 (2 in Figure 3-5)

Check this check box if channel 3 (the auxiliary channel of channel 1) is enabled by AUXCON and the active channel is 1 or 3 . The default setting is not checked.

- Aux Chan2 (3 in Figure 3-5)

Check this check box if channel 4 (the auxiliary channel of channel 1) is enabled by

## Basic Operation <br> Configuring Conversion Settings

AUXCON and the active channel is 1 or 3 . The default setting is not checked.
The information on the channel and trace conversion is displayed to the right of the Setup frame (4 in Figure 3-5).

Figure 3-6

Figure 3-7

Setting Window


## Adding Comment after Converted Line

The Code Conversion Assistant has a function to add comments at the end of the converted line to confirm which lines are converted.

Step 1. Enter the desired string in the Conversion Symbol text box in the configuration window. In the case of Figure 3-6, "! converted" is added after conversion as shown in Figure 3-7.

Setting Conversion Symbol


## Added Comment


e5070bcae038

## Set Configuration to Default

Click the Default button to set the configuration in the Setup frame to the default. The

## Basic Operation

## Configuring Conversion Settings

default settings are shown in Table 3-2.

## Table 3-2

Default Settings in Setup frame

| Name | Default Setting |
| :--- | :--- |
| Coupled Chan | Checked |
| Aux Chan1 | Unchecked |
| Aux Chan2 | Unchecked |
| Conversion Symbol | blank |

## Conversion

There are two conversion types. In this operation, the 8753ES commands highlighted by blue are converted to corresponding ENA commands by one of the following methods:

- Converting each command one-by-on
- Converting all of the commands highlighted in blue at once


## Converting Each Command

Step 1. Specify the range where the conversion is to be performed.
If a range is not specified, the range for conversion is automatically set to the area below
the cursor.

Step 3. Enable any one of the following option buttons in the 8753 Channel frame for the channel and trace conversion.

- X (1 in Figure 3-8)

Select this option when you convert to the ENA channel and trace manually. The tags <tr> and <ch> input whether the trance number or the channel number is inserted. You need to replace the tags after the conversion.

- 1 to 4 (2 in Figure 3-8)

Select these options when you use the Code Conversion Assistant to set the channel and trace. The Code Conversion Assistant converts the 8753ES GPIB commands according the configuration setup in "Setting up Channel and Trace Conversion" on page 22.

## Figure 3-8 <br> Main Window



## Basic Operation

## Conversion

Step 4. If there are two or more choices, the option buttons are activated in the Convert Option. Select the converted command from the E507x text box.

Step 5. Click the Convert button, then the 8753ES command is converted according to the option selected in Step 3 as shown in Figure 3-9 and the next 8753ES is highlighted.

## NOTE

The next 8753 ES command is highlighted without conversion when you click the Find Next button.

The Convert button is disabled if a command matching either of the following cases is displayed in the 8753 text box:

- The command is highlighted in red
- The command is highlighted in yellow and you need to refer to the manual for conversion

Figure 3-9
Conversion Example

OUTPUT @AgtB753; "CHAN1"

When " $X$ " is selected


When Anyone from " 1 " to " 4 " is selected.
150 OUTPUT [Agte753;":DISF: WIND1: ACT;:CALC1:PAR1:SEL"
e5070bcae011

## NOTE

The Code Conversion Assistant skips highlighted words under the following conditions because the word is clearly not a GPIB command:

- The command has no parameter
- A character other than double quotation (") or semi-colon (;) is placed next to the word

Code Conversion Assistant skips S11 in Figure 3-10 because a colon (:) is next to S11.
Figure 3-10 Skipped Word

```
390 INPUT "ENTER START FREQUENCY (MHz) for S11:",F_start {1!\psi
```

e5070bcae039

A tag may be inserted in some of the replaced commands. Table 3-3 shows the meaning of each of these tags.

## Table 3-3 Tag Description

| Tag | Description |
| :--- | :--- |
| <ch $>$ | Channel |

## Table 3-3

Tag Description

| Tag | Description |
| :--- | :--- |
| <tr> | Trace |
| <mk> | Marker |
| <pt> | Port Number |
| <file> | File Name |
| <r> | Amount of Red |
| <g> | Amount of Green |
| <b> | Amount of Blue |

## Converting All Commands Highlighted in Blue

Step 1. Specify the range where the conversion is performed as shown in Figure 3-11.

## Specifying the conversion range



Step 3. Enable any one of the following option buttons in the 8753 Channel frame for the channel and trace conversion.

- X (1 in Figure 3-8)

Select this option when you convert to ENA channel and trace manually. The tags <tr> and <ch> input whether the trance number or the channel number is inserted. You need to replace the tags after the conversion.

- 1 to 4 (2 in Figure 3-8)

Select these options when you use the Code Conversion Assistant to set the channel and trace. The Code Conversion Assistant converts the 8753ES GPIB command according the configuration setup in "Setting up Channel and Trace Conversion" on

## Basic Operation

## Conversion

page 22.
Step 4. Click on the Conversion All Blue code button, then all of the commands highlighted as blue are converted according to Step 3.

A tag may be inserted in some of the replaced commands. Table 3-3 on page 26 shows the meaning of each of these tags.

## Basic Operation <br> Undoing Conversion

## Undoing Conversion

To undo conversion, you need to exit the Code Conversion Assistant main window. The procedure is described as follows.

Step 1. Click on the Close button to close the Code Conversion Assistant main window.
Step 2. Operate as anyone of the following list to undo conversion.

- Press the $\mathbf{C t r l}$ and $\mathbf{Z}$ keys at the same time.
- Click the Edit - Undo button.
- click the right mouse button - Undo

NOTE
The undoing procedure used depends on the conversion type as follows.

- Undoing a conversion made command-by-command:

The EmEditor will undo the conversion for the command converted last. If you repeat this operation, EmEditor will undo conversions in reverse order of when they were made, i.e., from most recent to earlier.

- Undoing a conversion made for all commands highlighted in blue:

EmEditor will undo the conversion for all converted commands.

## Defining Programming Language Configuration

It is necessary to define the programming language configuration if the proper language is not already registered in the EmEditor. This section describes how to define the programming language configuration.

Step 1. Click Tools-Select Configuration-Define Configuration in the EmEditor. Then the Configuration window appears as shown in Figure 3-12.

Figure 3-12
Configuration Window


Step 2. Click the New button (1 in Figure 3-12). Then the New window appears as shown in Figure 3-13

Figure 3-13
New Window


Step 3. Select one of the following options and then click OK (2 in Figure 3-13).

- Use Default Configuration:

Create the new configuration as the default setting.

- Copy from Template:

Copy a setting from a predefined configuration.
Step 4. Input the name of the new configuration and then click Properties (2 in Figure 3-12).
Step 5. Click the File tab (1 in Figure 3-14). Input the extension in the default extension

## Basic Operation <br> Defining Programming Language Configuration

(2 in Figure 3-14) text box. The file is saved with this extension.

Figure 3-14

Figure 3-15

Setting Default Extension


Step 6. Click the Association tab (1 in Figure 3-15) when another extension is to be associated with this configuration.

Setting Association


Step 7. Check the Enable Association (2 in Figure 3-15) check box.
Step 8. Click the Add button (3 in Figure 3-15) and input the extension (4 in Figure 3-15).
Step 9. Click the OK button (5 in Figure 3-15).

## Changing Data File

This section describe the procedure for changing the conversion data file and the highlight data file.

## Changing Conversion Data File

You need to change the conversion data file when it is revised.

## Procedure

 appears.

Step 2. Click the Setup button in the Code Conversion Assistant main window, then the configuration window appears (Figure 3-16).

Figure 3-16
Configuration Window


Step 3. Select the conversion data file from the Conversion Table pull-down menu, then a message box (Figure 3-17) appears to show that the conversion data file (extension esy) must be changed.

Figure 3-17 Message Box


Step 4. Click the OK button in the message box and then click the close button in the configuration window.

Step 5. Click the Close button in the main window and then change the highlight data file as described in "Changing Highlight Data File."

NOTE
If the highlight data file has been changed, check the Highlight check box in the Code Conversion Assistant main window.

# Basic Operation <br> Changing Data File 

## Changing Highlight Data File

You need to change the highlight data file in the following cases:

- The programming language is changed
- After the conversion data file is changed


## Procedure

Step 1. Use the Tools menu (1 in Figure 3-18) and then the Select Configuration (2 in Figure 3-18) sub-menu to select the programming language for configuration.

NOTE Select Text if the desired programming language is not listed.

Figure 3-18
Programming Language Selection


Step 2. Click on Tools on the EmEditor toolbar.
Step 3. Select Properties for Current Configuration under the Tools menu (1 in Figure 3-19).

## Figure 3-19

Tools Menu


## Basic Operation

## Changing Data File

Step 4. Click the Highlight (1) tab.
Step 5. Click Import (1 in Figure 3-20) and navigate to the highlight data file (Table 3-4). The following table shows the list of highlight data files. Then Click OK (2 in Figure 3-20) to close the window. The file name is displayed at the top of the Highlight Words frame.

## NOTE

Figure 3-20

Table 3-4

The revision numbers of the conversion data file and the highlight data file must be the same. If they are not the same, the highlight and the conversion are not synchronized.

Property Window


Highlight Data Files

| File Name | Description |
| :--- | :--- |
| 8753_E507x_r100.esy ${ }^{* 1}$ | Basic highlight data files to highlight 8753ES GPIB <br> Commands |
| 8753_E507x_r100_c++.esy ${ }^{* 1}$ | Highlight data files for C++; words in the following <br> comment strings are not highlighted: <br> - Between "/*" and "*/"" <br> - After "//" in a line |
| 8753_E507x_r100_rmb.esy ${ }^{* 1}$ | Highlight data files for HP BASIC and HT BASIC; <br> words after exclamation points (!) in the line are not <br> highlighted |
| $8753 \_E 507 x$ x_r100_vb.esy ${ }^{* 1}$ | Highlight data files for Microsoft Visual Basic: <br> words after single quotation (') in the line are not <br> highlighted |

*1. "r100" indicates the revision number. The revision is 1.00 in this case.

Step 6. If the conversion data file is not yet changed, change it by referring to "Changing Highlight Data File" on page 33.

## 4 General Flow of Code Conversion

This chapter shows the general flow of code conversion by using an example of an actual program conversion. You'll find it very helpful to go through this chapter as you convert a program for the first time.

## General Flow of Code Conversion

This chapter illustrates the general flow of code conversion by reference to an example of an actual program conversion from sample8753.txt to sample8753_done.txt (Figure 4-2). In order to convert a program efficiently with the ENA Code Conversion Assistant, it is recommended that you follow the flow shown in Figure 4-1.

Figure 4-1
Code Conversion Flow


Figure 4-2
Program Conversion Example

8753ES sample program(sample 8753.txt)


## Converted program for ENA(sample 8753_done.txt)

```
ASSIGN @Agt8753 T0 717\downarrow
50 OUTPUT @4gt8753;":SYST:PRES;*OPC?".
60 ENTER @Agt8753;Reply\downarrow
60 EN
70 OUTPUT @4g+8753;":DISP:SPL D1_2"*
80 OUTPUT @Agt8753;":CALC1:PAR:COUN 1;:CALC2:PAR:COUN 1"\downarrow
90 OUTPUT @Agt8753;":DISP:WIND1:SPL D1;:DISP:WIND2:SPL D1"\downarrow
95!\downarrow
100 ! Set up measurement and display\downarrow
120!OUTPUT @4gt8753; "COUCOFF"*
130!\downarrow
140 ! Setuo Chamme| 1\downarrow
150 OUTPUT @Agt8753;":DISP:WIND1:ACT;:CALC1:PAR1:SEL"*
160 !OUTPUT @Agt8753; "AUMCOFF",
170 OUTPUT @4g+8753;":CALC1:PAR1:DEF S11"*
180 OUTPUT @Agt8753;":CALC1:FORMMLOG"\downarrow
190 OUTPUT @Agt8753;": INIT1:CONT OFF"\downarrow
200!*
240 ! Setup Chamnel 2$
250 OUTPUT @Ag+8753;":DISP:WIND2:ACT;:CALC2:PAR1:SEL"\downarrow
260 !OUTPUT @Agt8753; "MUXCOFF"\downarrow
270 OUTPUT @Agt8753;":CALC2:PAR1:DEF $22"*
280 OUTPUT OAgt8753;":CALC2:FORMM MLOG"\downarrow
290 OUTPUT @4gt8753;": INIT2:CONT OFF"\downarrow
300!\downarrow
340 ! Dual channel display\downarrow
350 !OUTPUT @Agt8753;"DUACON"\downarrow
360!*
370 ! Request start and stop frequency\downarrow
380 DIM F start (1:2),F stop(1:2)\downarrow
390 INPUT "ENTER START FREQUENCY (Hz) for S11:",F_start (1) \downarrow
400 INPUT "ENTER STOP FREOUENCY (Hz) for S11:",F_stop(1) \psi
410 INPUT "ENTER START FREQUENCY (Hz) for $22:",F
420 INPUT "ENTER STOP FREQUENCY (Hz) for S22:",F_stop(2)\downarrow
430!\downarrow
440 ! Program the analyzer sett ings }
450 FOR I=1 T0 2\downarrow
460 OUTPUT @4gt8753;":DISP:WIND"&VAL$(I)&":ACT;:CALC"8VAL$(I)&":PAR1:SEL"\downarrow
470 OUTPUT @Agt8753;":SENS"\ellVAL$(I)&":FREQ:STAR ";F_start(I)\downarrow
480 OUTPUT @Agt8753;":SENS"&VAL$(I)&":FREQ:STOP";F_stop(I) \downarrow
4 9 0 ~ N E X T ~ I ~ \psi ~
500!\downarrow
510 !. Single sweep measurenent.
520 OUTPUT @Agt8753;": INIT1; : INIT2;*OPC?"\downarrow
530 ENTER @Agt8753;Reply\downarrow
540!*
560 Butoscale the disolavs
570 OUTPUT @4gt8753;":DISP:WIND1:ACT;:CALC1:PAR1:SEL;:DISP:WIND1:TRAC1:Y:AUT0"\downarrow
580 OUTPUT @Agt8753;":DISP:WIND2:ACT;:CALC2:PAR1:SEL;:DISF:WIND2:TRAC1:Y:AUTO"*
590!+
600 LOCAL @4gt8753\downarrow
610 END
```


## Step 1: Understand your 8753ES program

Load the 8753ES program into the EmEditor. Check whether the 8753ES program contains a "Red" command. It is difficult to convert a "Red" command because the ENA doesn't have the same function represented by the command. Consider whether these commands can be deleted or alternative functions can be used on the ENA.

For example, there is no alternative for the mixer measurement function because of the hardware function. On the other hand, the printer setup is performed by a front panel operation on the ENA.
NOTE

NOTE
For more information on the definitions of the commands highlighted in blue, yellow or red, refer to the section "How to convert the commands highlighted as blue/yellow/red" on page 49.

For ease of code conversion, refer to the section "Making It Easier to Find 8753ES Commands" on page 48.

## Step 2: Understand the differences in channel and trace concepts between the 8753ES and the ENA

Refer to the section "Differences in Channel and Trace Concepts between 8753ES and ENA" on page 45.

## Step 3: Understand the display settings of the 8753ES program

1. The program code from line 40 to 350 sets up the display conditions (Figure 4-2 8753ES sample program). Confirm the status of the coupled channel and auxiliary channels (Figure 4-3 shows an example). After that, determine the display setting of the ENA based on the display conditions of the 8753ES.

Figure 4-3 8753ES and ENA display settings


NOTE
Typical conversion examples are shown in the section "How to Convert Commands for

Display Settings" on page 47.
2. Change the Setup in the configuration window by referring to the section "Configuring Conversion Settings" on page 22.

## Step 4: Convert codes for the display settings

In the ENA programming, the display settings affect program commands because most of the commands require the channel/trace numbers as parameters. For ease of code conversion, it is recommended that you convert the display setting commands first.

In Figure 4-4, the program codes from line 40 to 350 determine measurement and display settings. Take the following steps to convert them.

1. Convert the preset command
2. Set the layout of measurement channels (:DISP:SPL command)
3. Set the number of traces (: CALC<ch>: PAR: COUN command)
4. Set the layout of traces (:DISP:WIND<ch>: SPL command)
5. Convert the other commands with the Code Conversion Assistant

NOTE
For more information on the definitions of the commands highlighted in blue, yellow or red, refer to the section "How to convert the commands highlighted in blue/yellow/red" on page 49.

8753ES Sample Program:
Line 50 Convert the OPC? and PRES command. Refer to the section "How to convert the *OPC? or PRES command" on page 50.

Lines 70 to 90 Insert the commands for display setting (Steps 3-2 to 3-4).
Line 120 Delete or comment out the COUCOFF command. We have already finished channel and trace setting (Lines 70 to 90).

Line 150 Convert the CHAN1 command. This command is highlighted in blue. The Conversion Assistant shows a single choice.

Line 160 Delete or comment out the AUXCOFF command. We have already finished channel setting (Lines 70 to 90).

Lines 170 to Convert all commands. These commands are highlighted in blue.
190
Line 350 The Conversion Assistant shows a single choice.

Delete or comment out the DUACON command. We have already finished channel setting (Lines 70 to 90).

Figure 4-4 Display setting part of Figure 4-2

8753ES sample program(sample 8753.txt)
10 ASSIGN @Agt8753 T0 717
40 ! Initialize the system-
50 OUTPUT @Agt8753;"OPC?;PRES; " $\downarrow$
0 ENTER @Agt8753;Reply $\downarrow$
$65!\downarrow$
$70!$
$80!$
$90!$
$95!$
! Set up measurement and display $\downarrow$
120 DUTPUT @Agt8753; "COUCOFF" $\downarrow$
$130!\downarrow$
140! Setup Channel 1d
150 DUTPUT @Agt8753: "CHANT" $\downarrow$
160 OUTPUT @Agt8753; "AUXCOFF" $\downarrow$
170 OUTPUT @Agt8753;"S11" $\downarrow$
80 OUTPUT @Agt8753; "LOGM"
90 OUTPUT @Agt8753; "HOLD" $\downarrow$
00 ! $\downarrow$
! Setup Channel $2 \downarrow$
OUTPUT @Agt8753;"CHAN2" $\downarrow$
260 OUTPUT @Agt8753;"AUXCOFF" $\downarrow$
270 OUTPUT @Agt8753;"S22" $\downarrow$
280 OUTPUT @Agt8753;"LOGM"
290 OUTPUT @Agt8753; "HOLD"
300 !
340 ! Dual channel display $\downarrow$
50 OUTPUT @Agt8753;"DUACON" $\downarrow$
360 ! $\downarrow$
370 ! Request start and stop frequency $\downarrow$
380 DIM F_start (1:2),F_stop (1:2) $\downarrow$
390 INPUT "ENTER START FREQUENCY (MHz) for S11:",F_start (1) $\downarrow$
400 INPUT "ENTER STOP FREQUENCY (MHz) for S11:", F_stop(1) $\downarrow$
410 INPUT "ENTER START FREQUENCY (MHz) for S22:", F
420 INPUT "ENTER STOP FREQUENCY (MHz) for S22:", F_stop(2) $\downarrow$
$430!\downarrow$
440 ! Program the analyzer settings $\downarrow$
450 FOR $I=1$ TO 24
460 OUTPUT @Agt8753;"CHAN"QVAL\$(I) $\downarrow$
470 OUTPUT @Agt8753; "STAR"; F_start(I); "MHZ" $\downarrow$
480 OUTPUT @Agt8753;"STOP"; F_stop(I);"MHZ" $\downarrow$
490 NEXT I $\downarrow$
$500!+$
510 ! Single sweep measurement.
520 OUTPUT @Agt 8753;"OPC?;SING" $\downarrow$
530 ENTER @Agt8753; Reply $\downarrow$
540 ! $\downarrow$
$550!\downarrow$
560 ! Autoscale the displays $\downarrow$
570 OUTPUT @Agt8753; "CHAN1; BUTO"
580 OUTPUT @Agt 8753 ;"CHAN2; AUTO"
590 ! $\downarrow$
600 LOCAL @Agt8753
610 END $\downarrow$

Converted program for ENA(sample 8753_done.txt)
1 ! Converted Program for ENA $\psi$
10 ASSIGN @Agt8753 TO 717
40 ! Initialize the system
50 OUTPUT @Agt8753;":SYST:PRES;*OPC?" $\downarrow$
60 ENTER @Agt8753;Reply
$65!\downarrow$
70 OUTPUT @Agt8753;":DISP:SPL D1_2" $\downarrow$
80 OUTPUT @Agt 8753;":CALC1:PAR:COUN $1 ;:$ CALC2:PAR:COUN $1 " \downarrow$
90 OUTPUT @Agt8753;":DISP:WIND1:SPL D1;:DISP:WIND2:SPL D1" $\downarrow$
95 ! $\downarrow$
100 ! Set up measurement and display $\downarrow$
120 !OUTPUT @Ast8753;"COUCOFF" $\downarrow$
130 ! $\downarrow$
140 ! Setup Chamnel $1 \downarrow$
150 OUTPUT @Agt8753;":DISP:WIND1:ACT;:CALC1:PAR1:SEL" $\downarrow$
160 !OUTPUT @Ast 8753;"AUXCOFF" $\downarrow$
160 !OUTPUT @Agt8753;"AUXCOFF" $\downarrow$
170 OUTPUT @Agt8753; ":CALC1:PAR1:DEF S11" $\downarrow$
170 OUTPUT @Agt8753;":CALC1:PAR1:OEF SI
180 OUTPUT @4gt $8753 ; ":$ CALC1:FORM MLOG" $\downarrow$
190 OUTPUT @Agt8753;": INIT1:CONT OFF" $\downarrow$
200 ! $\downarrow$
240 ! Setup Channel 2 $\downarrow$
250 OUTPUT @Agt8753;":DISP:WIND2:ACT;:CALC2:PAR1:SEL" $\downarrow$
260 !OUTPUT @Agt 8753 ;"AUXCOFF"
270 OUTPUT @Agt 8753 ;":CALC2:PAR1:DEF $\$ 222^{\prime \prime}$
280 OUTPUT @Agt 8753 ;":CALC2:FORM MLOG"
290 OUTPUT @Agt8753;": INIT2:CONT OFF" $\downarrow$
$300!\downarrow$
340 ! Dual channel display $\downarrow$
350 !OUTPUT @Agt8753;"DUACON" $\downarrow$
360 ! $\downarrow$
370 ! Request start and stop frequency $\downarrow$
380 DIM F_start (1:2),F_stop(1:2) $\downarrow$
390 INPUT "ENTER START FREQUENCY (Hz) for S11:",F_start (1) $\downarrow$
400 INPUT "ENTER STOP FREQUENCY (Hz) for S11:", F_stop (1) $\downarrow$
410 INPUT "ENTER START FREQUENCY (Hz) for $\$ 22: "$, Fstapt $(2) \downarrow$
420 INPUT "ENTER STOP FREQUENCY (Hz) for S22:", F_stop(2) $\downarrow$
430 !
440 ! Program the analyzer sett ings. $\downarrow$
450 FOR I $=1$ TO $2 \downarrow$
460 OUTPUT @Agt 8753 ;":DISP:WIND"8VAL\$(I)8":ACT;:CALC"8VAL\$(I)8":PAR1:SEL" $\downarrow$
470 OUTPUT @Agt8753;":SENS"8VAL\$(I)\&":FREQ:STAR ";F_start(I) $\downarrow$
480 OUTPUT @Agt8753;":SENS"8VAL\$(I)\&":FREQ:STOP";F_stop(I) $\downarrow$
490 NEXT I $\downarrow$
500 ! $\downarrow$
510 ! Single sweep measurement $\downarrow$
520 OUTPUT @Agt 8753;": INIT1;: INIT2; *OPC?" $\downarrow$
530 ENTER @Agt8753;Reply $\downarrow$
540 ! $\downarrow$
560 ! Autoscale the displavst
570 OUTPUT @Agt8753;":DISP:WIND1:ACT;:CALC1:PAR1:SEL;:DISP:WIND1:TRAC1:Y:AUTO" 580 OUTPUT @Agt8753;":DISP:WIND2:ACT;:CALC2:PAR1:SEL;:DISP:WIND2:TRAC1:Y:AUTO" $\downarrow$ 590 ! $\downarrow$
600 LOCAL @Agt $8753 \downarrow$
610 END 4

## Step 5: Convert the other codes

## 8753ES Sample Program:

Lines 370 to 420

Lines 450 to 480

Line 520

Lines 570 to 580

Although several words are highlighted, ignore them because they are not program commands.

Variables are used to specify the command parameters. We need some tips to convert this type of program code. For more details, refer to the section "How to Convert When Variables Specify Command Parameters" on page 51.

Convert the OPC? and SING command. Refer to the section "How to convert the SING command".

## Continuation of Figure 4-4

8753ES sample program


Converted program for ENA
370 ! Request start, and stop frequen
380 DIM F_start (7:2), F stop (1:2)
390 INPUT "ENTER START FREQUENCY (Hz) for SII:", F_start (1) $\downarrow$
400 INPIU "ENTER STOP FREQLENCY ( Hz ) for $\$ 11:$ ", F_stop (1)
410 INPUT "ENTER START FREGUENCY (Hz) for $\$ 22:$ ", F_start (2)
420 INFUT "ENTER STOP FREQLENCY $(\mathrm{Hz})$ for $\mathrm{S22}$ :", F_stop (2)
$430!+$
$440!$
440 ! Program the analyzer sett ings $\downarrow$
450 FOR $1=1$ T0 2
460 OUTPUT @Ast8753;":DISP:WINO"2VAL\$(I), ":ACT;:CALC"\&VAL\$(I)\&":PAR1:SEL"

490 NEKT I
500 !
510

530 ENTER @Agt8753;Reply $\downarrow$
$540!$
550 !
 580 OUTPUT @Agt8753;":DISP:WIND2:ACT;:CALC2:PAR1:SEL;:DISP:WIND2:TRAC1:Y:AUT0" 590 !.
600 LOCAL @Agt8753.

## Step 6: Debugging

Run the converted program. If an execution error occurs, analyze the error for possible causes. The following resources are very useful in the debugging process:

- Chapter 5, "Tips for the 8753ES Code Conversion," on page 43
- Chapter 6, "Comparing functions of the 8753ES and the E5070B/E5071B," on page 67
- Chapter 7, "Comparing Commands of the 8753ES and E5070B/E5071B," on page 85
- ENA Programmer's Guide


## General Flow of Code Conversion

## 5 <br> Tips for the 8753ES Code Conversion

This chapter provides a wide range of conversion tips that you may find useful when converting programs.

## Taking Advantage of Migration Guide and ENA Programmer's Guide

The following resources are very useful in the conversion process (Figure 5-1).

- Code Conversion Assistant Operation Manual:

Refer to Chapter 6 and Chapter 7 "Function and Command Comparisons between the 8753ES and the ENA".

- ENA Programmer's Guide:

This manual is shipped with the ENA and can also be downloaded at http://www.agilent.com/find/ena

Figure 5-1 Conversion flow and useful tools


## Differences in Channel and Trace Concepts between 8753ES and ENA

Most of the ENA program commands require the channel number and the trace number, unlike the 8753ES. By understanding the differences in channel and trace concepts, you can convert the 8753ES GPIB commands more efficiently. Figure 5-2 highlights the key conceptual differences.

Figure 5-2

Table 5-1 Sweep conditions of each channel.

|  | Sweep Conditions |  |
| :---: | :---: | :---: |
| Coupled CH | 8753 ES | ENA |
| OFF | $\mathrm{CH} 1=\mathrm{CH} 3$ and <br> $\mathrm{CH} 2=\mathrm{CH} 4$ and <br> $\mathrm{CH} \neq \mathrm{CH} 2$ | $\mathrm{CH} 1 \neq \mathrm{CH} 2$ |
| ON | $\mathrm{CH} 1=\mathrm{CH} 2=\mathrm{CH} 3=\mathrm{CH} 4$ | Not available |

Key conceptual differences


Table 5-1 shows the sweep conditions of the 8753ES and the ENA. The ENA does not have the channel coupling function, but there are multiple traces in a channel. The sweep conditions of the traces are the same on the ENA if they are in the same channel.
Accordingly, this feature works in a similar way to the channel coupling function.

By using the two channels on the ENA, every measurement setting of the 8753ES can be
$\qquad$ converted.

Table 5-2 shows a comparison of the channel settings between the 8753ES and the ENA. Use this table as described in the following procedure.

Step 1. Understand which state is the current setting on the 8753ES by finding the COUC and AUXC commands in the source code.

Step 2. Set up the conversion setting as described in "Configuring Conversion Settings" on page 22.

Step 3. Comment out or delete COUC and AUXC, then insert the ENA GPIB command.
Step 4. Convert the other commands. If the active channel is specified, the Code Conversion Assistant converts the channel number and the trace number as shown in Table 5-2.
Table 5-2 Channel and Trace Comparison

| Desig. | 8753ES Channel Setting |  |  | ENA Active Channel and Trace corresponded to 8753ES Active Channel (ENA Channel - ENA Trace) |  |  |  | ENA GPIB Command to set the number of traces in the channel |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | COUC | AUXC |  | Chan 1 | Chan 2 | Chan 3 | Chan 4 |  |
|  |  | Chan 1 | Chan 2 |  |  |  |  |  |
| $\mathrm{a}^{* 1}$ | ON | OFF | OFF | 1-1 | 1-2 | - | -- | :CALC1:PAR:COUN 2 |
| b | ON | ON | OFF | 1-1 | 1-2 | 1-3 | - | :CALC1:PAR:COUN 3 |
| c | ON | OFF | ON | 1-1 | 1-2 | -- | 1-3 | :CALC1:PAR:COUN 3 |
| d | ON | ON | ON | 1-1 | 1-2 | 1-3 | 1-4 | :CALC1:PAR:COUN 4 |
| e | OFF | OFF | OFF | 1-1 | 2-1 | - | - | CALC1:PAR:COUN 1; :CALC2:PAR COUN 1 |
| f | OFF | ON | OFF | 1-1 | 2-1 | 1-2 | - | :CALC1:PAR:COUN 2; CALC2:PAR COUN 1 |
| g | OFF | OFF | ON | 1-1 | 2-1 | - | 2-2 | :CALC1:PAR:COUN 1; CALC2:PAR COUN 2 |
| h | OFF | ON | ON | 1-1 | 2-1 | 1-2 | 2-2 | :CALC1:PAR:COUN 2; CALC2:PAR COUN 2 |

*1.Preset State

## How to Convert Commands for Display Settings

This section shows typical conversion examples for display settings. Channels 1 and 2 of the 8753 ES are either coupled or uncoupled, which is a key point in converting the commands for display settings (Figure 5-3). Use the following commands to set the display layout.

- :DISP: SPL (set the channel layout)
- :DISP:WIND<ch>:SPL (set the graph layout in the specified channel)

Figure 5-3 Typical conversion examples


## NOTE

Some layouts on the 8753ES cannot be converted to the ENA. For such a layout, set a layout similar to that on the 8753 ES .

## Making It Easier to Find 8753ES Commands

It is recommended that you use the search function of the EmEditor to highlight the GPIB address. The GPIB commands that you have to convert are written with the OUTPUT and GPIB address in HP BASIC. By highlighting the 8753ES GPIB address commands, you can easily find the 8753ES GPIB commands from among the large number of program codes.

In Figure 5-4, The I/O path @Agt8753 indicating the GPIB address is highlighted.
To highlight the @Agt8753 commands in green, follow this procedure:
$\{$ Search $\} \rightarrow\{$ Find $\} \rightarrow$ Find "@Agt8753"

Figure 5-4

## Highlight the OUTPUT commands


e5070bcae052

## How to Convert Commands Highlighted in Blue

The commands highlighted in blue can be easily converted into the appropriate ENA commands because there is only one choice. For more details on conversion procedures, refer to the section "Conversion" on page 25.

## How to Convert Commands Highlighted in Yellow

The commands highlighted in yellow cannot be converted as easily as those in blue because there are multiple choices for conversion or the source code needs to be modified.

In this case, refer to the information in the Code Conversion Assistant window. You may need to refer to the tips in this section or in the ENA programmer's guide, depending on the complexity of the conversion.

## How to Convert Commands Highlighted in Red

It is difficult to convert a command highlighted in red because the ENA doesn't have the same function. Consider whether these commands can be deleted or alternative functions can be used on the ENA.

For more details on the functional differences between the 8753ES and the ENA, refer to the section "Important Functional Differences" on page 68.

## How to Convert the OPC? Command

The OPC? command of the 8753ES waits for the completion of the next command. The *OPC? command of the ENA waits for the completion of all pending operations. To convert the OPC? command, move it to the end of the command line and convert OPC? to *OPC?

Figure 5-5 OPC? command conversion

## Before



## After

50 OUTPUT @Agt8753;":PRES;*OPC?" 60 ENTER @Agt8753;Replay

## How to Convert the PRES Command

The PRES command of the 8753ES can be replaced with the :SYST : PRES command.
Figure 5-6
PRES command Conversion

| Before |
| :--- |
| 50 OUTPUT @Agt8753;"OPC?;PRES;" <br> 60 ENTER @Agt8753;Replay |
| After |
| 50 OUTPUT @Agt8753;":SYST:PRES;*OPC? <br> 60 ENTER @Agt8753;Replay |

## NOTE

After performing preset on the ENA, it is recommended that you first set the display conditions. The display settings affect program commands because most of the ENA commands require the channel/trace numbers as parameters. For more information, refer to Chapter 4, "General Flow of Code Conversion," on page 35.

## How to Convert When Variables Specify Command Parameters

When variables are used to specify command parameters, there are several choices for how to convert the command even if it is highlighted in blue. The following example shows how to convert the CHAN command. You have to change the CHAN command according to the channel and trace setting on the ENA.

Figure 5-7 Code conversion when variables are used
Before

```
450 FOR I =1 TO 2
460 OUTPUT @Agt8753;"CHAN"&VAL$(I )
490 NEXT I
```

When conversion assistant is used

```
450 FOR I =1 TO 2
460 OUTPUT @Agt8753;":DISP:WIND<ch>:ACT;:CALC<ch>:PAR<tr>:SEL"&VAL$I )
490 NEXT I
```

After conversion

```
450 FOR I =1 TO 2
460 OUTPUT @Agt8753;":DISP:WIND"&VAL$(I )&":ACT;:CALC"&VAL$(I ):PAR1:SEL"
490 NEXT I
```


## How to Convert the SING Command

This program gerenates a trigger to channel 1 and waits for the end of measurement by using *OPC?.

```
10 OUTPUT @ENA;":INIT1:CONT OFF"
20 OUTPUT @ENA;":TRIG:SOUR BUS"
30 OUTPUT @ENA;":TRIG:SING"
40 OUTPUT @ENA;"*OPC?"
50 ENTER @ENA;Reply
```

For more details, refer to the section "Using the :TRIG:SING command" in Chapter 5 of the "ENA programmer's guide". separately. (Couple/Uncouple is not available in ENA.)

## How to Convert a Frequency Sweep List Table

It is recommended that you develop the frequency sweep list table from scratch with reference to the section "Configuring Measurement Conditions" in Chapter 3 of the ENA Programmer's Guide. It is likely to take more time to convert the frequency sweep list table because the concepts between the 8753ES and ENA are different. The ENA sets up an entire table at the same time, while the 8753ES sets up a table line-by-line.

## Conversion Example for a Frequency Sweep List Table

The following list frequency table is created. The conversion example of programs for executing a list frequency sweep is shown in Table 5-3.

| Start | Stop | Number <br> of Points | Power Level | IF <br> Bandwidth |
| :--- | :--- | :--- | :--- | :--- |
| 850 MHz | 870 MHz | 5 | 0 dBm | 10 Hz |
| 870 MHz | 880 MHz | 11 | 0 dBm | 100 Hz |
| 880 MHz | 940 MHz | 15 | -10 dBm | 3 kHz |
| 940 MHz | 955 MHz | 100 | -10 dBm | 3 kHz |
| 955 MHz | 1040 MHz | 10 | -10 dBm | 1 kHz |

The flow of this program is as follows:

1. Enter the contents of the list frequency table into array variables (Lines 90 to 210)
2. Define the I/O path of the analyzer. (Line 230)
3. Preset the analyzer and then stop the sweep operation. (Lines 250 to 300)

NOTE On the Code Conversion Assistant, the bus trigger is selected as the trigger source. On the 8753ES, which has no bus trigger, the setting remains at the internal trigger.
4. Set the analyzer in swept mode. (Line 350)

NOTE
$\qquad$
The Code Conversion Assistant allows itself to be set in swept mode even when the sweep type is separate from the list frequency sweep.
5. Make arrangements for the IF bandwidth and power level to be specified segment by segment. (Lines 370 to 470)

NOTE
On the 8753ES, a command is sent to establish the above setup. On the Code Conversion Assistant, however, the parameters for the list table creation command are used to perform the setup.
6. Create the list frequency table. (Lines 510 to 590)
7. Perform one sweep operation. (Lines 630 to 680)
8. Execute autoscale. (Line 690)

Table 5-3 Comparison Between Two Programs for Executing a List Frequency Sweep


Table 5-3
Comparison Between Two Programs for Executing a List Frequency Sweep

| 8753ES | Code Conversion Assistant |
| :---: | :---: |
| 310! | 310! |
| 320! Set list frequency mode | 320! Set sweep mode |
| 330! (swept list mode) | 330! (swept mode) |
| 340! | 340 ! |
| 350 OUTPUT @Agt8753;"EDITLIST;LISTTYPELSWP" | 350 OUTPUT @Agte507x;":SENS1:SWE:GEN ANAL" |
| 360! | 360 ! |
| 370! | 370 INTEGER Freq_mode,List_ifbw,List_power,List_d |
|  | elay,List_time |
| 380! | 380! |
| 390! | 390! Set the frequency segment mode to Start/Stop |
| 400! | 400! Freq_mode 0: Start/Stop 1:Center/Span |
| 410! Turn on list power mode | 410! |
| 420! Turn on list ifbw mode | 420 Freq_mode=0 |
| 430! | 430! |
| 440 OUTPUT @Agt8753;"LISIFBWMON" | 440 List_ifbw=1 ! Turn on list ifbw mode |
| 450 OUTPUT @Agt8753;"LISPWRMON" | 450 List_power=1 ! Turn on list power mode |
| 460! | 460 List_delay=0 ! Turn off list delay mode |
| 470! | 470 List_time=0 ! Turn off list time mode |
| 480! | 480! |
| 490! Create segment table | 490! Create segment table |
| 500! | 500! |
| 510 FOR I=1 TO Numb | 510 DIM Para\$[300] |
| 520 OUTPUT @Agt8753;"SADD;STAR";Listtable(1,1); | 520 Para\$="5, "\&VAL\$ (Freq_mode) \&", "\&VAL\$ (List_ifbw |
| "MHZ" | ) \&", "\&VAL\$ (List_power) \&", "\&VAL\$ (List_delay) \&", " $\%$ VAL \$ (List_time) \&","\&VAL\$ (Numb) |
| 530 OUTPUT @Agt 8753;"STOP"; Listtable (I, 2) ; "MHZ" | 530 FOR I=1 TO Numb |
| 540 OUTPUT @Agt8753;"POIN";Listtable(I, 3) | 540 FOR J=1 TO 5 |
| 550 OUTPUT @Agt8753;"SEGPOWER"; Listtable (I, 4) | 550 Para\$=Para\$\&", "\&VAL\$(Listtable (I, J) ) |
| 560 OUTPUT @Agt8753;"SEGIFBW";Listtable (I, 5) | 560 NEXT J |
| 570 OUTPUT @Agt8753;"SDON" | 570 NEXT I |
| 580 NEXT I | 580 OUTPUT @Agte507x;":SENS1:SEGM:DATA ";Para\$ |
| 590 OUTPUT @Agt8753;"EDITDONE" | 590! |
| 600! | 600! |
| 610! Make a single sweep | 610! Make a single sweep |
| 620! | 620! |
| 630 OUTPUT @Agt 8753;"LISFREQ;S21;OPC?;SING" | 630 OUTPUT @Agte507x;":SENS1:SWE:TYPE SEGM;" |
| 640 ENTER @Agt8753; Done | 640 OUTPUT @Agte507x;":CALC1:PAR1:DEF S21;" |
| 650! | 650 OUTPUT @Agte507x;":INIT" |
| 660! | 660 OUTPUT @Agte507x;":TRIG:SING" |
| 670! | 670 OUTPUT @Agte507x;"*OPC?" |
| 680! | 680 ENTER @Agte507x;Done |
| 690 OUTPUT @Agt8753;"AUTOSCAL;WAIT" | 690 OUTPUT @Agte507x;":DISP:WIND1:TRAC1:Y:AUTO" |
| 700 ! | 700 ! |
| 710 LOCAL @Agt8753 | 710 ! |
| 720 END | 720 END |

## How to Export a Frequency Sweep List Table

Use the :MMEM: STOR: SEGM command. You can save the frequency sweep list table of the active channel into a CSV format file. Please note that the table's format is different between the 8753ES and the ENA. For more details, refer to the section "Configuring Measurement Conditions" in Chapter 3 of the ENA Programmer's Guide.

## How to Convert a Limit Table

It is recommended that you develop the limit table from scratch with reference to Chapter 8 "Limit Test" in the ENA Programmer's Guide. It is likely to take more time to convert a limit table because the concepts between the 8753ES and ENA are different. The ENA sets up an entire table at the same time, while the 8753ES sets up a table line-by-line.

## Limit Test

The limit table for displaying the limit lines in Table 5-8 is created. A comparison between two programs for displaying the limit lines and executing the limit test is shown in Table 5-4.

CAUTION
When points are not included in the range defined by the limit lines, the 8753ES carries out the limit test using the interpolated values. On the Code Conversion Assistant, however, the test is passed when points are not included. Sweep conditions should be defined so that points are included within the range defined by the limit lines.

Figure 5-8
Limit Lines Drawn Using Program in Table 5-3


The flow of this program is as shown below:

1. Pass the contents of the limit table to array variables. (Lines 210 to 340)
2. Define the I/O path of the analyzer. (Line 360)
3. Preset the analyzer and then stop the sweep operation. (Lines 390 to 420)
4. Create the limit table. (Lines 460 to 550)

The items in the limit table for the 8753ES differ from those for the Code Conversion

Table 5-4 Comparison Between Two Programs for Executing a Limit Test

| 8753ES | Code Conversion Assistant |
| :---: | :---: |
| 10 !-------------------------------------------------- | 10 ! - |
| 20 ! The following constants are used to represent | 20 ! The following constants are used to represent |
| 30 ! limit line "type" in the table below. | 30 ! limit line "type" in the table below. |
| 40 ! | 40 ! |
| 50 ! 1 = flat line | 50 ! Limit line type |
| 60 ! 2 = sloping line | 60 ! $0=$ off |
| 70 ! 3 = single point (also used to terminate a line segment) | 70 ! 1 = upper limit line |
| 80 !-------------------------- | 80 ! 2 = lower limit line |
| 90 ! | 90 ! |
| 100 DIM Limtype\$ (1:3) [2] | 100!- |
| 110 DATA FL, SL, SP | 110! |
| 120 READ Limtype\$(*) | 120! |
| 130! | 130! |
| 140! The list below has the following entries: | 140! The list below has the following entries: |
| 150! Stim: Stimulus Value (Hz) | 150! Start: Start frequency ( Hz ) |
| 160! upper: Upper Limit | 160! Stop: Stop frequency ( Hz ) |
| 170! lower: Lower Limit | 170! strt resp: Limit value at start frequency (dB) |
| 180! lim type: Limit Line type | 180! stop resp: Limit value at stop frequency (dB) |
| 190!----------------- | 190! lim type: Limit line type |
| 200! |  |
| 210 DIM Listtable(1:6,1:4) | 210 DIM Listtable (1:5,1:5) |
| 220 Freqlist: ! \|lim | 220 Freqlist: ! \| lim | | strt| stop |
| 230! List: Stim \| uppr | lower |type | 230! List: \| type | Start | Stop | resp | resp |
| 240! -------------------------- |  |
|  | 250! ------------------------------------ |
| 260 DATA 850.0, -90, -200, 1 | 260 DATA 1, 850.0E+6, 870.0E+6, -90, -90 |
| 270 DATA 870.0, -85, -200, 1 | 270 DATA 1, 870.0E+6, 880.0E+6, -85, -85 |
| 280 DATA 880.0, -85, -200, 3 | 280 DATA 1, 940.0E+6, 955.0E+6, 0, 0 |
| 290 DATA 940.0, 0, -6, 1 | 290 DATA 1, 1040.0E+6, 1040.0E+6, -90, -90 |
| 300 DATA 955.0, 0, 0 -6, 3 | 300 DATA $2, \quad 940.0 \mathrm{E}+6, \quad 955.0 \mathrm{E}+6, \quad-6, ~-6$ |
| 310 DATA 1040.0, -90, -200, 3 | 310 ! |
| 320 ! | 320! |
| 330 READ Listtable(*) | 330 READ Listtable(*) |
| 340 Numb=SIZE (Listtable, 1) | 340 Numb=SIZE (Listtable, 1) |
| 350 ! | 350 ! |
| 360 ASSIGN @Agt8753 TO 727 | 360 ASSIGN @Agte507x TO 717 |
| 370 ! | 370 ! |
| 380 ! Initialize the system | 380! Initialize the system |
| 390 OUTPUT @Agt8753;"OPC?;PRES" | 390 OUTPUT @Agte507x;":SYST:PRES" |
| 400 ENTER @Agt8753; Done | 400 OUTPUT @Agte507x;"*OPC?" |
| 410 OUTPUT @Agt8753; "HOLD" | 410 ENTER @Agte507x;Done |
| 420! | 420 OUTPUT @Agte507x;":INIT1:CONT OFF" |
| 430! | 430 ! |
| 440! Create the corresponding limit table | 440! Create the corresponding limit table |
| 450! | 450 ! |
| 460 OUTPUT @Agt8753; "EDITLIML; CLEAL" | 460 DIM Para\$[200] |
| 470 FOR I=1 TO Numb | 470 Para\$=VAL\$ (Numb) |
| 480 OUTPUT @Agt8753;"SADD" | 480 FOR I=1 TO Numb |
| 490 OUTPUT @Agt8753;";LIMS";Listtable(I, 1) ; "MHZ" | 490 FOR J=1 TO 5 |
| 500 OUTPUT @Agt8753;";LIMU";Listtable (I, 2) | 500 Para\$=Para\$\&", "\&VAL\$(Listtable ( $1, \mathrm{~J}$ ) ) |
| 510 OUTPUT @Agt8753;";LIML";Listtable (I, 3) | 510 NEXT J |
| 520 OUTPUT @Agt8753;";LIMT";Limtype\$(Listtable( | 520 NEXT I |
| I, 4) ) |  |
| 530 OUTPUT @Agt8753; ${ }^{\text {; SDON" }}$ | 530 OUTPUT @Agte507x;":CALC1:LIM:DATA "; Para\$ |
| 540 NEXT I | 540 ! |
| 550 OUTPUT @Agt8753;"EDITDONE" | 550 ! |
| 560 ! | 560 ! |
| 570 OUTPUT @Agt8753;"LIMILINEON;LIMITESTON" | 570 OUTPUT @Agte507x;":CALC1:LIM:DISP ON" |
| 580 ! | 580 OUTPUT @Agte507x;":CALC1:LIM ON" |
| 590 LOCAL @Agt8753 | 590 ! |
| 600 END | 600 END |

## How to Export a Limit Table

Use the :MMEM: STOR:LIM command. You can save the limit list table of the active channel into a CSV format file. Please note that the table's format is different between the 8753ES and the ENA. For more detail, refer to Chapter 8 "Limit Test" in the ENA Programmer's Guide.

## How to Convert a Power Sensor Calibration Factor Table

It is recommended that you to develop the limit table from scratch with reference to Chapter 4 "Performing Calibration" in the ENA Programmer's Guide. It is likely to take more time to convert a power sensor calibration factor table because the procedure is much different between the 8753ES and ENA. The ENA sets up an entire table at the same time, while the 8753 ES sets up a table line-by-line.

## How to Convert a Power Loss Table

It is recommended that you to develop the limit table from scratch with reference to Chapter 4 "Performing Calibration" in the ENA Programmer's Guide. It is likely to take more time to convert a power loss table because the procedure is much different between the 8753 ES and ENA. The ENA sets up an entire table at the same time, while the 8753 ES sets upa table line-by-line.

## How to Convert Program Code for Calibration

It is recommended that you develop a limit table from scratch with reference to Chapter 4 "Performing a Calibration" in the ENA Programmer's Guide. It is likely to take more time to convert the GPIB commands for calibration because ENA calibration is simpler than that of the 8753ES.

## Conversion Example for Full 2-Port Calibration

The conversion example of programs for executing full 2-port calibration on channel 1 is shown in Table 5-5.

The program flow is shown below. The line numbers are common for both the Code Conversion Assistant and 8753ES examples.

1. Define the I/O path of the analyzer. (Line 40)
2. Select calibration kits. (Lines 80 to 280)

NOTE
For the 8753 ES , the choice is made between two types: $85031 \mathrm{~B}(7 \mathrm{~mm})$ and $875032 \mathrm{~B} / \mathrm{E}(\mathrm{N}$ type, $50 \Omega$ ). For the Code Conversion Assistant, in contrast, the labels of the registered calibration kits are read to make the selection.
3. Start full 2-port calibration. (Line 320)

NOTE
The Code Conversion Assistant requires one or more ports to be designated. In this example, ports 1 and 2 are used.
4. Measure the reflection. (Lines 370 to 1070)

## NOTE

When two or more standards are registered in a calibration class on the 8753 ES , you must send two commands, one for selecting a standard and the other for ending the calibration class measurement. On the Code Conversion Assistant, which allows only one standard to be registered in each calibration class, there is no command for selecting a standard.
5. Measure the transmission. (Lines 1120 to 1370)

## NOTE

Specifying the input port and output port enables the Code Conversion Assistant to measure matching and transmission simultaneously.
6. Determine whether or not to measure isolation. Execute once the measurement selection is made. (Lines 1420 to 1750)

## NOTE

To end calibration without performing isolation, the 8753ES requires a command for ending calibration without performing isolation (Line 1470). The Code Conversion Assistant, however, allows the calibration to be ended without sending any command.
7. Calculate the error correction factors based on the data acquired, and then end the calibration.(Lines 1810 to 1840)

Table 5-5 Comparison Between Two Programs for Executing Full 2-Port Calibration


Table 5-5
Comparison Between Two Programs for Executing Full 2-Port Calibration


Table 5－5 Comparison Between Two Programs for Executing Full 2－Port Calibration

| 8753ES |  | Code Conversion Assistant |  |
| :---: | :---: | :---: | :---: |
| 1110 | CLEAR SCREEN | 111 | CLEAR SCREEN |
| 1120 | PRINT＂\＃\＃TRANSMISSION MEASUREMENT \＃\＃＂ | 112 | PRINT＂\＃\＃TRANSMISSION MEASUREMENT \＃\＃＂ |
| 1130 | OUTPUT＠Agt8753；＂TRAN＂ | 113 | ！ |
| 1140 |  | 114 | ！ |
| 1150 | CALL Waitforkey（＂CONNECT THRU［PORT 1 TO PORT | 115 | PRINT＂CONNECT THRU［PORT 1 TO PORT 2］．Pres |
| 2］＂） |  | s［ | nter］when ready．＂ |
| 1160 | ！ | 116 | INPUT＂＂，Buff\＄ |
| 1170 | $!$ l | 117 | ！ |
| 1180 | ！Forward Transmission Measurement | 118 | ！Forward Transmission Measurement |
| 1190 | ！ | 119 | $!$ l |
| 1200 | PRINT＂MEASURING FORWARD TRANSMISSION＂ | 120 | PRINT＂MEASURING FORWARD TRANSMISSION＂ |
| 1210 | OUTPUT＠Agt8753；＂OPC？；FWDT＂ | 121 | OUTPUT＠Agte507x；＂：SENS1：CORR：COLL：THRU |
|  |  | 2，1 |  |
| 1220 | ENTER＠Agt8753；Reply | 122 | OUTPUT＠Agte507x；＂＊OPC？＂ |
| 1230 | ＋ | 123 | ENTER＠Agte507x；Buff\＄ |
| 1240 | OUTPUT＠Agt8753；＂OPC？；FWDM＂ | 124 | $!$ 仡 |
| 1250 | ENTER＠Agt8753；Reply | 125 | ！ |
| 1260 | ， | 126 | ！ |
| 1270 | ！Reverse Transmission Measurement | 127 | ！Reverse Transmission Measurement |
| 1280 | ！ | 128 | ！ |
| 1290 | PRINT＂MEASURING REVERSE TRANSMISSION＂ | 129 | PRINT＂MEASURING REVERSE TRANSMISSION＂ |
| 1300 | OUTPUT＠Agt8753； $\mathrm{CPPC?;REVT"}$ | 130 | OUTPUT＠Agte507x；＂：SENS1：CORR：COLL：THRU |
|  |  | 1，2 |  |
| 1310 | ENTER＠Agt8753；Reply | 131 | OUTPUT＠Agte507x；＂＊OPC？＂ |
| 1320 | ， | 132 | ENTER＠Agte507x；Buff\＄ |
| 1330 | OUTPUT＠Agt8753；＂OPC？；REVM＂ | 133 | $!$ 仡 |
| 1340 | ENTER＠Agt8753；Reply | 134 | ！ |
| 1350 | ！ | 135 | ！ |
| 1360 | ！Transmission Measurement Done | 136 | ！ |
| 1370 | $!$ ！ | 137 | ！ |
| 1380 | OUTPUT＠Agt8753；＂TRAD＂ | 138 | ！ |
| 1390 | $!$ ！ | 139 | ！ |
| 1400 | ！Isolation Measurement | 140 | ！Isolation Measurement |
| 1410 | ！ | 141 | ！ |
| 1420 | Start＿isolation：！ | 142 | Start＿isolation： |
| 1430 | CLEAR SCREEN | 143 | CLEAR SCREEN |
| 1440 | PRINT＂\＃\＃ISOLATION MEASUREMENT \＃\＃＂ | 144 | PRINT＂\＃\＃ISOLATION MEASUREMENT \＃\＃＂ |
| 1450 | INPUT＂SKIP ISOLATION CAL？Y OR N．＂，An\＄ | 145 | INPUT＂SKIP ISOLATION CAL？＂，An\＄ |
| 1460 | IF An\＄＝＂Y＂OR An\＄＝＂Y＂THEN | 146 | IF An\＄＝＂Y＂OR An\＄＝＂Y＂THEN Cal＿done |
| 1470 | OUTPUT＠Agt8753；＂OMII＂ | 147 | ， |
| 1480 | GOTO Cal＿done | 148 | ！ |
| 1490 | END IF | 149 | $!$ |
| 1500 | IF An\＄＜＞＂N＂AND An\＄＜＞＂n＂THEN Start＿isolation | 150 | IF An\＄＝＂N＂OR An\＄＝＂n＂THEN |
| 1510 | ． | 151 | ， |
| 1520 | CALL Waitforkey（＂ISOLATE TEST PORTS＂） | 152 | PRINT＂ISOLATE TEST PORTS 1 AND 2．Press when ready．＂ |
| 1530 | ！ | 153 | INPUT＂＂，Buff\＄ |
| 1540 | OUTPUT＠Agt8753；＂ISOL＂ | 154 | ！ |
| 1550 | OUTPUT＠Agt8753；＂AVERFACT10＂ | 155 | OUTPUT＠Agte507x；＂：SENS1：AVER：COUN 10＂ |
| 1560 | OUTPUT＠Agt8753；＂AVEROON＂ | 156 | OUTPUT＠Agte507x；＂：SENS1：AVER ON＂ |
| 1570 | ！ | 157 | ！ |
| 1580 | ！Forward Isolation Measurement | 158 | ！Forward Isolation Measurement |
| 1590 | ． | 159 | ． |
| 1600 | PRINT＂MEASURING FORWARD ISOLATION＂ | 160 | PRINT＂MEASURING FORWARD ISOLATION＂ |
| 1610 | OUTPUT＠Agt8753；＂OPC？；FWDI＂ | 161 2,1 | OUTPUT＠Agte507x；＂：SENS1：CORR：COLL：ISOL |
| 1620 | ENTER＠Agt8753；Reply | 162 | OUTPUT＠Agte507x；＂＊OPC？＂ |
| 1630 | ！ | 163 | ENTER＠Agte507x；Buff\＄ |
| 1640 | ！ | 164 | ！ |
| 1650 | ！Reverse Isolation Measurement | 165 | ！Reverse Isolation Measurement |
| 1660 | ！ | 166 | ！ |
| 1670 | PRINT＂MEASURING REVERSE ISOLATION＂ | 167 | PRINT＂MEASURING REVERSE ISOLATION＂ |

Table 5-5
Comparison Between Two Programs for Executing Full 2-Port Calibration

| 8753ES |  | Code Conversion Assistant |  |
| :---: | :---: | :---: | :---: |
| 1680 | OUTPUT @Agt8753;"OPC?;REVI" | 1680$1,2 "$$\quad$ OUTPUT @Agte507x;":SENS1:CORR:COLL: ISOL |  |
|  |  |  |  |
| 1690 | ENTER @Agt8753;Reply | 1690 | OUTPUT @Agte507x;"*OPC?" |
| 1700 | ! | 1700 | ENTER @Agte507x;Buff\$ |
| 1710 | ! | 1710 | $!$ |
| 1720 | OUTPUT @Agt8753;"ISOD;AVEROOFF" | 1720 | OUTPUT @Agte507x;":SENS1:AVER OFF" |
| 1730 | $!$ 边 | 1730 | ELSE |
| 1740 | ! | 1740 | GOTO Start_isolation |
| 1750 | ! | 1750 | END IF |
| 1760 | ! | 1760 | ! |
| 1770 | ! Done with Full 2-Port Calibration | 1770 | ! Done with Full 2-Port Calibration |
| 1780 | ! | 1780 | ! |
| 1790 | Cal_done: ! | 1790 | Cal_done: ! |
| 1800 | CLEAR SCREEN | 1800 | CLEAR SCREEN |
| 1810 | PRINT "COMPUTING CALIBRATION COEFFICIENTS" | 1810 | PRINT "COMPUTING CALIBRATION COEFFICIENTS" |
| 1820 | OUTPUT @Agt8753;"OPC?;SAV2" | 1820 | OUTPUT @Agte507x;":SENS1:CORR:COLL:SAVE" |
| 1830 | ENTER @Agt8753;Reply | 1830 | OUTPUT @Agte507x;"*OPC?" |
| 1840 | ! | 1840 | ENTER @Agte507x;Buff\$ |
| 1850 | PRINT "DONE WITH FULL 2-PORT CAL." | 1850 | PRINT "DONE WITH FULL 2-PORT CALIBRATION" |
| 1860 | OUTPUT @Agt8753;"MENUON" | 1860 | ! |
| 1870 | ! | 1870 | END |
| 1880 | END |  |  |
| 1890 | ! |  |  |
| 1900 | ! Subroutine |  |  |
| 1910 | ! |  |  |
| 1920 | SUB Waitforkey(Lab\$) |  |  |
| 1930 | PRINT Lab\$\&" Press ENTER when ready" |  |  |
| 1940 | INPUT A\$ |  |  |
| 1950 | SUBEND |  |  |

## How to Convert Program Code for Save/Recall Functions

It is recommended that you develop a limit table from scratch with reference to Chapter 9 "Saving and Recalling (File Management)" in the ENA Programmer's Guide. It is likely to take more time to convert the GPIB commands for save/recall functions because the concepts between the 8753ES and ENA are different.

## How to Read Instrument Model Number

Use the *IDN? command as in the following sample program:

```
1 0 ~ O U T P U T ~ @ E N A ; " * I D N ? ; " '
20 ENTER @ENA;Reply$
30 Model$=Reply$[22;6]
```


## How to Read Firmware Revision Number

Use the *IDN? command as in the following sample program:

```
10 OUTPUT @ENA;"*IDN?;"
20 ENTER @ENA;Reply$
30 Firmrev$=Reply$ [40;6]
```


## How to Read Serial Number

In order to read the serial number, the OUTPSERN command is used with the 8753ES. With the ENA, use the *IDN? command as in the following sample program:

```
10 DIM A$[46]
20 Output @ENA;"*IDN?"
30 Enter @ENA;Reply$
4 0 ~ S e r i a l N o \$ ~ = ~ R e p l y \$ [ 2 9 , 3 8 ] ~
50 Print SerialNo$
```


## How to Convert a Command Containing a Unit

The 8753 ES can interpret a unit in the command parameter, but the ENA cannot. Remove any unit before conversion.

You have to remove the unit for conversion from the GPIB command. You must convert with care when the unit is frequency. The frequency parameter unit is interpreted as Hz on the ENA. For example, you have to set the parameter to 3000000000 or 3 E 9 when you specify the frequency as 3 GHz .

## How to Convert a Binary Data Transfer Program

It is recommended that you develop a limit table from scratch with reference to Chapter 7 "Reading/Writing Measurement Data" in the ENA Programmer's Guide. When converting the program, you must take into account the fact that the definitions of the header and footer are different between the 8753ES and the ENA.

## How to Read the Active Channel and Trace

Reading the active channel on the 8753 ES is equivalent to reading the active channel and trace. To read the active trace on the ENA, the channel must be specified in the
command.Table 5-6 shows a conversion example.
Table 5-6 Converting the program to read the active channel.

| 8753ES | ENA |
| :--- | :--- |
| 100 OUTPUT @Agt8753;"OUTPCHAN" | 100 OUTPUT @Agtena;":SERV: CHAN:ACT?" |
| 110 ENTER @Agt8753;Chan | 110 ENTER @Agtena;Chan <br> 120 OUTPUT @Agtena;":SERV: CHAN"\&VAL\$ (Cha <br> n) \&":TRAC:ACT?" <br> 130 ENTER @Agtena;Trace |

## Difference in Marker Couple/Uncouple

In the 8753 ES , the marker coupling function is in effect for all channels, even if the channel setting is uncoupled. On the other hand, on the ENA, marker coupling is in effect only among the traces in the same channel. Convert the following commands while giving special attention to this difference.

- MARKCOUP
- MARKUNCO


## How to Convert a Query on 8753ES to Multiple Queries on ENA

Some individual 8753ES query commands are converted to multiple query commands. In this case, you need to modify the program to read the response as string. An example is shown in Table 5-7.

## Table 5-7 Converting the program to read the active channel.

| 8753ES | ENA |
| :--- | :--- |
| 100 OUTPUT @Agt8753;"LOWSTEP?" | 100 OUTPUT @Agtena;":CALC1:TRAN:TIME?; :C <br> ALC1:TRAN:TIME:STIM?" <br> 110 ENTER @Agt8753;Tran |

## How to Convert Chop/Alternate Sweep Mode

The 8753ES has a function for switching the chop/alternate sweep mode. The chop/alternate mode is set by the following commands:

- CHOPAB
- ALTAB

On the other hand, on the ENA, the traces in on channel work as a chop sweep while the traces in the other channels work as the alternate sweep mode.

You need to set each trace into a separate channel on the ENA because the sweep operation in the alternate sweep mode is performed separately for each channel in the 8753ES. Thus, Table 5-2 on page 46 is not applicable to the alternate sweep mode. You need to set the channel and trace numbers manually when you convert a program where the alternate sweep mode is activated.

## How to Convert Color Setting

It is recommended that you develop a color setting from scratch with reference to Chapter 3 "Setting Up the Analyzer" in the ENA Programmer's Guide. It is likely to take more time to convert a color setting because the procedure is much different between the 8753ES and ENA.

Tips for the 8753ES Code Conversion How to Convert Color Setting

## 6 <br> Comparing functions of the 8753ES and the E5070B/E5071B

This chapter describes the information necessary to replace Agilent 8753ES with the Agilent E5070B/E5071B.

## Important Functional Differences

This section describes the key differences between the Agilent 8753ES and Agilent E5070B/E5071B.

## Channel and Trace Concepts

In the 8753ES, channels 1 and 2 are independent from each other and have auxiliary channels, channels 3 and 4, respectively. Channels 3 and 4 can be displayed as additions to channels 1 and 2, respectively. This allows up to four channels to be displayed for up to four traces on the screen simultaneously. Channels 1 and 3 and channels 2 and 4 are always coupled, while channels 1 and 2 are independent from each other. This enables you to specify different sweep conditions on each of channels 1 and 2. The E5070B/E5071B has four/nine/twelve/sixteen independent channels, each of which allows sweep conditions to be defined different from those on other channels. On the screen you can open up to sixteen windows, each of which allows up to sixteen traces to be defined.

## Measurement Parameters

In the 8753ES, S-parameters as well as measurement parameters such as $A, B, R, A / R$, $B / R$, and $A / B$ are supported to enable you to measure values such as the absolute value of the power input to a port. The E5070B/E5071B, however, allows only S-parameters to be measured.

## Test Port Output Ranges

The 8753ES comes standard with test sets for two ports, while the E5070B/E5071B comes optionally with test sets for two ports (Options 213 and 214), three ports (Options 313 and 314), and four ports (Options 413 and 414). Furthermore, the 8753ES comes optionally with a $75 \Omega$ test set (Option 075), while the E5070B/E5071B does not.

For more about the measurement frequency ranges of the 8753ES and E5070B/E5071B, see Table 6-1.

Table 6-1 Measurement Frequency Ranges

| Function | $\mathbf{8 7 5 3 E S}$ | E5070B/E5071B |
| :--- | :--- | :--- |
| Measurement <br> frequency <br> range | 30 kHz to 3 GHz (std.) | 300 kHz to $3 \mathrm{GHz}(\mathrm{EHz} 570 \mathrm{~B})$ |

For more about the output power levels and output power ranges of the 8753ES and E5070B/E5071B, see Table 6-2.

## Table 6-2 Test Port Output Power Levels

| Function | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: |
| Output power levels | $\begin{aligned} & -85 \mathrm{dBm} \text { to } 10 \mathrm{dBm} \text { (std.) } \\ & -85 \mathrm{dBm} \text { to } 8 \mathrm{dBm} \\ & \text { (Options } 014 \text { and } 075 \text { ) } \end{aligned}$ | $\begin{aligned} & -15 \mathrm{dBm} \text { to } 0 \mathrm{dBm} \\ & \text { (Options 213, 313, and 413) } \\ & -50 \mathrm{dBm} \text { to } 0 \mathrm{dBm} \\ & \text { (Options } 214,314 \text {, and } 414 \text { ) } \end{aligned}$ |
| Output power ranges | $\begin{aligned} & -15 \mathrm{dBm} \text { to } 10 \mathrm{dBm} \text { (std.) or } \\ & -15 \mathrm{dBm} \text { to } 8 \mathrm{dBm} \\ & \text { (Options } 014 \mathrm{and} 075 \text { ), } \\ & -25 \mathrm{dBm} \text { to } 0 \mathrm{dBm}, \\ & -35 \mathrm{dBm} \text { to }-10 \mathrm{dBm} \text {, } \\ & -45 \mathrm{dBm} \text { to }-20 \mathrm{dBm} \text {, } \\ & -55 \mathrm{dBm} \text { to }-30 \mathrm{dBm} \text {, } \\ & -65 \mathrm{dBm} \text { to }-40 \mathrm{dBm} \text {, } \\ & -75 \mathrm{dBm} \text { to }-50 \mathrm{dBm}, \\ & -85 \mathrm{dBm} \text { to }-60 \mathrm{dBm} \end{aligned}$ | $\begin{aligned} & -15 \mathrm{dBm} \text { to } 0 \mathrm{dBm} \text { only } \\ & \text { (Options } 213,313 \text {, and } 413 \text { ) } \\ & -15 \mathrm{dBm} \text { to } 10 \mathrm{dBm} \text {, } \\ & -20 \mathrm{dBm} \text { to } 5 \mathrm{dBm} \text {, } \\ & -25 \mathrm{dBm} \text { to } 0 \mathrm{dBm} \text {, } \\ & -30 \mathrm{dBm} \text { to }-5 \mathrm{dBm} \text {, } \\ & -35 \mathrm{dBm} \text { to }-10 \mathrm{dBm} \text {, } \\ & -40 \mathrm{dBm} \text { to }-15 \mathrm{dBm} \text {, } \\ & -45 \mathrm{dBm} \text { to }-20 \mathrm{dBm} \text {, } \\ & -50 \mathrm{dBm} \text { to }-25 \mathrm{dBm} \\ & \text { (Options } 214,314 \text {, and } 414 \text { ) } \end{aligned}$ |

## Sweep Function

The list (segment) sweep function enables you to perform measurements corresponding to two or more sweep conditions in one sweep operation and is supported both on the 8753ES and E5070B/E5071B. While the 8753ES allows only up to 30 segments per table to be defined, the E5070B/E5071B allows up to 201 segments to be defined. Furthermore, while two or more commands are needed to create a table using GPIB (SCPI) commands on the 8753 ES , only one command does the same function on the E5070B/E5071B.

The 8753ES supports an IF bandwidth up to 6 kHz , but the E5070B/E5071Bsupports an IF bandwidth up to 100 kHz , enabling faster sweep operations than with the 8753ES.

While the 8753ES supports automatically selecting the output power range, the E5070B/E5071B supports only manual selection.

On the 8753 ES , which supports frequency offset sweeps, frequency conversion devices such as mixers can be measured. The E5070B/E5071B, however, does not support this function.

## Calibration

The types of calibration kits supported by the 8753ES and E5070B/E5071B are shown in Table 6-3.
Table 6-3 Supported Calibration Kits
$\left.\begin{array}{|l|l|l|}\hline \text { Type of calibration kit } & \mathbf{8 7 5 3 E S} & \text { E5070B/E5071B } \\ \hline 7 \mathrm{~mm} & 85031 \mathrm{~B} & \text { N/A } \\ \hline 3.5 \mathrm{~mm} & 85033 \mathrm{C} / \mathrm{D} / \mathrm{E} & 85033 \mathrm{D} / \mathrm{E}, 85032 \mathrm{D} \\ \hline \mathrm{N} \text { type } & 50 \Omega: 85032 \mathrm{~B} / \mathrm{E} / \mathrm{F} \\ 75 \Omega: 85036 \mathrm{~B} / \mathrm{E}\end{array}\right)$

The 8753ES allows only one type of user-defined calibration kit to be saved in the internal memory. Up to 15 classes can be set up when defining calibration kits, including 12 classes (isolation included) to be used for full 2-port calibration and three calibration classes (THRU, reflect, and line/match for TRL*/LRM* calibration. A maximum of seven standards can be defined for each calibration class.
In contrast, the E5070B/E5071B allows ten types of user-defined calibration kits to be saved in the internal memory, which include the five calibration kits registrated beforehand. When setting up calibration classes, OPEN, SHORT, and LOAD can be set up on each port and THRU between ports. Only one standard is allowed for each calibration class.

## ECal

Both the 8753ES and E5070B/E5071B support ECal measurement. However, each supports slightly different functions. The 8753ES supports enhanced response calibration, 1-port calibration for S11 and S22, and full 2-port calibration. Although the E5070B/E5071B does not support enhanced response calibration, it does support full 3-port calibration (Options 313, 314, 413, 414) and full 4-port calibration (Options 413, 414), making multi-port calibration possible.

While the 8753ES allows the manual measurement for the THRU standard, the E5070B/E5071B does not. Furthermore, the 8753ES allows a frequency array or module information to be read, but these functions are not supported on the E5070B/E5071B.

## Trigger System

The trigger system detects the signal for starting a measurement (trigger) and controls decisions on whether to measure or not measure.

On the 8753ES, the trigger state is available for the pair of a main channel and an auxiliary channel (two pairs: channels 1 and 3 and channels 2 and 4). For each pair, three states are available: Hold, Waiting for Trigger, and Measurement. When a trigger event occurs, one pair of channels in the Waiting for Trigger state are put into a sweep operation. If the other pair is also Waiting for Trigger, then the next trigger event puts it into sweep operation as well. When the sweep condition coupling channels is turned on, the Hold, Waiting for Trigger, and Measurement states are common to all channels. In this case, when a trigger event occurs in the Waiting for Trigger state, all channels are put into sweep operation. For example, when you set channel 1 and 2 to uncouple and sweep each channel, you need to set each channel to Hold state and make trigger events to each channel.

On the $\mathrm{E} 5070 \mathrm{~B} / \mathrm{E} 5071 \mathrm{~B}$, the trigger system involves states of the entire system and those of each of the channels. Since a trigger event is common to all channels, three system-wide states exist: Hold, Waiting for Trigger, and Measurement. On the other hand, two states exist for each channel: Idle and Startup. For a channel in an Idle state, measurement is not performed at all, while for a channel in Startup state, measurements are started in sequence after an event occurs. When all channels are in an Idle state, the E5070B/E5071B is in Hold state when viewed as an entire system. If even one Startup state channel exists, the E5070B/E5071B enters the Waiting for Trigger or Measurement state. Upon a transition from the Waiting for Trigger to the Measurement state, measurement is performed on channels put into Startup state starting with the channel with the smallest channel number.

While the 8753ES allows either High or Low input signals from the external trigger line to be selected, the E5070B/E5071B allows only Low input signals to be selected.

## Data Flow

The data flow in the 8753ES is shown in Figure 6-1 while the flow in the E5070B/E5071B is shown in Figure 6-2. As described in "Reading/Writing Data" on page 73, the types of data you can read/write using the 8753ES differ from those you can read/write using the E5070B/E5071B.

Figure 6-1
8753ES Data Flow


Figure 6-2

Table 6-4

E5070B/E5071B Data Flow


## Reading/Writing Data

Types of data that can be handled by the 8753ES and E5070B/E5071B are listed in Table 3-4.

## Reading/Writing Data

| Function | $\mathbf{8 7 5 3 E S}$ | E5070B/E5071B |
| :--- | :--- | :--- |
| Data transfer <br> format | Intra-device binary <br> IEEE 32-bit floating point <br> IEEE 64-bit floating point <br> ASCII <br> PC-DOS 32-bit floating point | IEEE 64-bit floating point <br> ASCII |
| Reading/Writing <br> data | Raw data array <br> Calibration coefficient array (before interpolation) <br> Corrected data array <br> Formatted memory array <br> Memory trace <br> Calibration kit array data <br> Power meter calibration coefficient array (before <br> interpolation) | Formatted data array <br> Formatted memory array <br> Corrected data array <br> Corrected memory array <br> Power meter calibration coefficient <br> array (after interpolation) |
| Reading data | Pre-raw data (in Take4 mode) <br> Calibration coefficient array (after interpolation) <br> Power meter calibration coefficient array (after <br> interpolation) <br> Entry area display <br> All lists in list format |  |

## Screen Display and Marker Functions

The 8753 ES allows up to four channels to be displayed on the screen. Up to five markers can be displayed on each channel. Also, one of the displayed markers can be designated as the reference marker. Each channel also supports a fixed marker that can be established at a fixed position.

In contrast, the E5070B/E5071B enables you to have all sixteen channels displayed by opening up nine separate windows on the screen. Sixteen traces can be displayed for each channel, and up to nine markers can be displayed for each trace. In addition to the markers displayed, you can also designate one marker as the reference marker. The E5070B/E5071B, however, does not support fixed markers.

The 8753ES supports the Maximum, Minimum, Target value, and Bandwidth marker functions. The E5070B/E5071B supports all these in addition to a Peak Search function. Using this function, you can determine whether or not to search for a positive or negative peak. In addition, the 8753ES has an additional function to search for the maximum or minimum bandwidth. While the 8753ES allows a target value or search tracking to be established only on the active marker, the E5070B/E5071B allows a target value or search tracking to be established on all markers.

## Math Operation Functions on Traces

On the 8753ES, each channel is provided with a memory trace. For this reason, math operations between the data trace and memory trace are supported: "Data / Memory" and "Data - Memory". On the E5070B/E5071B, however, "Data $\times$ Memory" and "Data + Memory" are supported along with the division and subtraction operations described above.
The trace displays supported on the 8753 ES are: "Data trace only", "Memory trace only", "Both memory trace and data trace", and "Data math only". The E5070B/E5071B supports these functions in addition to "Both data math and memory trace".

## Device Test Functions

The 8753 ES supports the limit test, ripple test, and bandwidth test, while the E5070B/E5071B supports only the limit test. For the limit test on the 8753ES, a limit test table is provided for each channel with up to 18 segments are allowed in each table. In contrast, the E5070B/E5071B allows a limit test table to be defined for each trace and up to 100 segments to be defined per table.

Among the items read from the test results, the 8753ES supports a pass/fail for each channel, segment, and point, plus maximum/minimum values for each segment. In contrast, the E5070B/E5071B supports only a pass/fail of the active trace on each channel.

## Analytical Functions

Although the 8753ES does not support the fixture simulator function, the E5070B/E5071B does. The fixture simulator supported by the E5070B/E5071B include the balanced-unbalanced transformation function for analyzing balanced devices, and the matching circuit function.

## Save/Recall

For storing data, the 8753ES is provided with an internal register, internal disk drive (floppy disk), and external disk drive (connected through the GPIB). In contrast, the E5070B/E5071B provides an internal hard disk drive, and an internal disk drive (floppy disk). While the 8753ES can save or recall the device setup, screen color settings, and test sequences, the E5070B/E5071B is able to save or recall the instrument setup, segment sweep table, and limit line table as well as VBA projects. The 8753ES saves display data in JPEG format while the E5070B/E5071B supports the Windows ${ }^{\circledR}$ Bitmap (BMP) and Portable Network Graphics (PNG) format.

## Test Sequence Program

Although the 8753ES supports the test sequence program, the E5070B/E5071B provides an environment for developing VBA programs for automatic measurement.

## Outputting to a Printer/Plotter

The 8753ES enables you to establish the print area covering an entire sheet or just a $1 / 4$ sheet, and to define traces, the reference line, and colors of warning messages. In contrast, the E5070B/E5071B supports only full-sheet output, and an on/off setting for highlighting the entire screen in connection with color setup.

The 8753ES supports parallel ports, serial ports, and GPIB as printer ports, although the E5070B/E5071Bsupports only parallel- and USB-connected printers.

## GPIB Interface

While the 8753ES uses pass control to pass the controller information to an external PC or instrument, the E5070B/E5071B does not support this function.

## LAN Interface

Although the 8753ES does not support a LAN interface, support for LANs is standard on the E5070B/E5071B.

## Other Functions

The 8753ES is provided with Take4 mode, mixer measurement function, and harmonics measurement function (Option 002), but the E5070B/E5071B is not provided with these functions.

## Comparing Functions

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement | Reset |  |  | Can be executed by using the front panel and the GPIB command. | Can be executed by using the front panel, the GPIB command, and telnet. |
|  | Channel | Number of channels |  | 4 channels | 4/9/12/16 channels |
|  |  | Coupling betw | channels | Channels 3 and 4 are auxiliary channels for channels 1 and 2 and subject to the same sweep conditions, etc. applicable to channels 1 and 2. <br> Couple/Uncouple between channels 1 and 2 can be set up. | Channels are independent of each other. |
|  | Trace |  |  | A trace for each channel | Each channel can accommodate up to 4/9/12/16 traces. |
|  | Measurement parameter |  |  | S-parameters, A, B, R, A/R, B/R, A/B, and analog bus | S-parameters, <br> Mixed-mode S-parameters |
|  | S-parameter conversion |  |  | Impedance (reflection and transmission), admittance (reflection and transmission), and 1/S | $\leftarrow$ |
|  | Display format (Data format) |  |  | log magnitude, linear magnitude, phase, group delay, Smith chart, polar format, SWR, real, imaginary | log magnitude, linear magnitude, phase, expanded phase, positive phase, group delay, Smith chart, polar format, SWR, real, imaginary |
|  | Test port output | Number of ports |  | 2 ports | $\begin{aligned} & 2 \text { ports (Opts. 213/214) } \\ & 3 \text { ports (Opts. 313/314) } \\ & 4 \text { ports (Opts. 413/414) } \end{aligned}$ |
|  |  | Frequency |  | 30 kHz to 3 GHz (Std.) <br> 30 kHz to 6 GHz (Opt. 006) | 300 kHz to 3 GHz (E5070B) <br> 300 kHz to 8.5 GHz (E5071B) |
|  |  | Power level |  | $\begin{aligned} & -85 \text { to }+10 \mathrm{dBm} \text { (Std.) } \\ & -85 \text { to }+8 \mathrm{dBm}(\text { Opts. } 014 / 075) \end{aligned}$ | -15 to 10 dBm (Opts. 213, 313, 413) -50 to 10 dBm (Opts. 214, 314, 414) |
|  |  | Characteristic Impedance |  | $\begin{aligned} & 50 \Omega \text { (Std.) } \\ & 75 \Omega \text { (Opt. 075) } \end{aligned}$ | $50 \Omega$ |
|  |  | Coupled/Uncoupled power levels |  | You can define Couple/Uncouple between channels and between ports. | Traces are coupled on the same channel, not between channels. |
|  |  | Power slope function |  | Available | $\leftarrow$ |
|  |  | Turning the output On/Off |  | Allowed | $\leftarrow$ |
|  |  | Power range | Items to be set up | Per port and per channel | Per channel (Opts. 214/314/414) If the above options are not installed, the default range is -15 to 10 dBm . |
|  |  |  | Automatic setting | On/Off setting capability | Manual setting |
|  |  |  | Setting range | Range setting with 10 dBm resolution is definable from between -15 and +10 dBm down to between -85 and -60 dBm . | Range setting with 5 dBm resolution is definable from between -15 and 10 dBm down to between -50 and -25 dBm |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement (cont'd.) | Sweep conditions | Number of points (except for the list frequency sweep operation) |  | $\begin{aligned} & 3,11,21,26,51,101,201,401,801 \text {, } \\ & 1601 \end{aligned}$ | Arbitrary value from 2 to 1601 |
|  |  | Sweep type |  | linear sweep, log sweep, list sweep, power sweep, and CW time sweep | linear sweep, log sweep, segment sweep, and power sweep |
|  |  | List frequency sweep | Number of list tables | One for channels 1 and 3 and one for channels 2 and 4, two in total | One for each channel (16 in total) |
|  |  |  | Number of segments per table | Up to 30 | Up to 201 |
|  |  |  | Creation of a table using GPIB(SCPI) command | Creating a table using more than one command | Creating a table using a single command |
|  |  |  | Number of points | 1 to 1601 points per segment Up to 1601 points in total | 2 to 1601 points per segment Up to 1601 points in total |
|  |  |  | Stepped/swept mode | stepped mode and swept mod. Selectable only when list frequency sweep is performed | stepped mode, swept mode, fast stepped mode, and fast swept mode. Selectable also when list frequency sweep is not performed. |
|  |  |  | Sweep of designated segments. | Allowed | Not allowed (Always sweeps all segments.) |
|  |  | Sweep time |  | Automatic, Manual (definable from the shortest time to 24 hours) | Automatic, Manual (range of definable sweep depends on sweep condition) |
|  |  | IF bandwidth |  | $\begin{aligned} & 10 \mathrm{~Hz}, 30 \mathrm{~Hz}, 100 \mathrm{~Hz}, 300 \mathrm{~Hz}, \\ & 1 \mathrm{KHz}, 3 \mathrm{kHz}, 3.7 \mathrm{kHz}, 6 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{~Hz}, 15 \mathrm{~Hz}, 20 \mathrm{~Hz}, 30 \mathrm{~Hz}, \\ & 40 \mathrm{~Hz}, 50 \mathrm{~Hz}, 70 \mathrm{~Hz}, 100 \mathrm{~Hz}, \\ & 150 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}, \\ & 400 \mathrm{~Hz}, 500 \mathrm{~Hz}, 700 \mathrm{~Hz}, 1 \mathrm{kHz}, \\ & 1.5 \mathrm{kHz}, 2 \mathrm{kHz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}, \\ & 5 \mathrm{KHz}, 7 \mathrm{KHz}, 10 \mathrm{KHz}, 15 \mathrm{KHz}, \\ & 20 \mathrm{KHz}, 30 \mathrm{KHz}, 40 \mathrm{kHz}, 50 \mathrm{KHz}, \\ & 70 \mathrm{KHz}, 100 \mathrm{kHz} \end{aligned}$ |
|  |  | Averaging |  | Can be set from 1 to 999. | Can be set from 1 to 999. |
|  | Smoothing |  |  | The smoothing aperture can be set from $0.05 \%$ to $20 \%$. | The smoothing aperture can be set from $0.05 \%$ to $25 \%$. |
|  | Electrical delay | Transmission line |  | Compatible with coaxial cables and waveguides | Compatible with coaxial cables only |
|  |  | Value |  | Any value from 0 to 10 seconds | Any value from -10 to +10 seconds |
|  | Phase offset |  |  | Any value from $-360^{\circ}$ to $+360^{\circ}$. | Any value from $-360^{\circ}$ to $360^{\circ}$. |
|  | Setting sweep conditions for Couple/Uncouple |  |  | Channels 1 and 3 and channels 2 an 4 are always coupled. Channels 1 and 2 can be set either at Couple or Uncouple. | Traces in the same channel are coupled; traces in different channels are not coupled. |
|  | Trigger mode |  |  | Continuous, single, hold, specified number of sweeps | Continuous, single, hold |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: |
| Measurement (cont'd.) | Trigger source |  | Internal, external (per sweep, per point), manual (per point) | Internal, external (per sweep), bus, manual (per sweep) |
|  | External trigger line |  | Can be set to High or Low | Low |
| Display | Memory trace | Number | One per channel | One per trace |
|  |  | Data math | Data / Memory <br> Data - Memory | Data / Memory <br> Data $\times$ Memory <br> Data - Memory <br> Data + Memory |
|  |  | Display | Data trace only <br> Memory trace only <br> Simultaneous display of memory <br> traces and data traces <br> Data math only | Data trace only <br> Memory trace only <br> Simultaneous display of memory <br> traces and data traces <br> Data math only <br> Simultaneous display of data math and memory traces |
|  | Frequency display |  | On/Off setting is definable for all channels. | On/off setting is definable channel by channel. |
|  | Graph layout |  | Up to four graphs can be displayed. | Windows are assigned to each channel; up to sixteen windows can be displayed. <br> Up to sixteen graphs can be displayed in each window. |
|  | Math between data traces |  | The results for channel $1 /$ channel 2 can be displayed on the trace for channel 2. | Not available |
|  | Scale | Auto scale | Available | $\leftarrow$ |
|  |  | Reference line | Both value and position can be specified. | $\leftarrow$ |
|  |  | Scales per division | Definable | $\leftarrow$ |
|  |  | Number of divisions | Fixed at 10 | Can be set in increments of 2 from 4 to 30 . |
|  | Turning the softkey area On/Off |  | Available | $\leftarrow$ |
|  | List display |  | Available | Not available |
|  | List display of Instrument State |  | Available | Not available |
|  | Color settings |  | Available | $\leftarrow$ |
|  | Screen brightness setting |  | Available | Not available |
|  | Turning the LCD On/Off |  | Available | $\leftarrow$ |
|  | Turning the update On/Off |  | Always updates. | Available |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: |
| Calibration | Calibration kit |  | Available calibration kits: <br> 7 mm : 85031B <br> $3.5 \mathrm{~mm}: 85033 \mathrm{C} / \mathrm{D} / \mathrm{E}$ <br> N type ( $50 \Omega$ ): 85032B/E/F <br> N type (75 $\Omega$ ): $85036 \mathrm{~B} / \mathrm{E}$ <br> $2.4 \mathrm{~mm}: 85056 \mathrm{~A} / \mathrm{D}$ <br> TRL 3.5 mm : 85052C <br> User defined calibration kit | $\begin{aligned} & 3.5 \mathrm{~mm}: 85033 \mathrm{D} / \mathrm{E}, 85052 \mathrm{D} \\ & \mathrm{~N} \text { type }(50 \Omega): 85032 \mathrm{~B} / \mathrm{F} \\ & \mathrm{~N} \text { type }(75 \Omega): 85036 \mathrm{~B} / \mathrm{E} \end{aligned}$ <br> Up to six user defined calibration kits can be registered. |
|  | Calibration type | Not more than two ports | Response calibration <br> Response and isolation calibration <br> Enhanced response calibration <br> S11 1-port calibration <br> S22 1-port calibration <br> Full 2-port calibration <br> TRL*/LRM* Calibration <br> Receiver calibration <br> Power meter calibration | Response calibration <br> (OPEN,SHORT, THRU) <br> Full 1-port calibration <br> Full 2-port calibration <br> TRL Calibration (VBA) <br> The response calibration includes isolation measurement as an option. |
|  |  | Not less than three ports | Not available | Full 3-port calibration (Opts. 313, 314, 413, and 414 only) <br> Full 4-port calibration (Opts. 413 and 414 only) <br> TRL Calibration (VBA) |
|  | Omission of the isolation measurement |  | Possible <br> (Can be omitted by designating it using the softkeys on the front panel or sending a GPIB command from the front panel) | Possible <br> (Isolation measurement is performed as an option accompanying a response calibration and 2-, 3-, and 4-port calibration.) |
|  | Power meter calibration |  | Available | $\leftarrow$ |
|  | Receiver calibration |  | Available | Not available |
|  | Adapter removal |  | Available | Not available |
|  | Velocity factor |  | Definable | $\leftarrow$ |
|  | Characteristic impedance of the measurement system |  | Definable | Definable with fixture simulator |
|  | Port extension |  | Definable for ports 1 and 2 and inputs A and B | Definable for each port per channel |
|  | Selection between chop sweep and alternate sweep |  | Can be changed over. | Chop sweep for traces in a channel and alternate sweep between channels |
|  | Error correction |  | On/Off setting is definable. | $\leftarrow$ |
|  | Interpolating the calibration coefficient |  | On/Off setting is definable. | Always On. |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Calibration (cont'd.) | Defining the calibration kit | Calibration class |  | S11A (OPEN) <br> S11B (SHORT) <br> S11C (LOAD) <br> S22A (OPEN) <br> S22B (SHORT) <br> S22C (LOAD) <br> Forward Transmission <br> Forward Match <br> Reverse Transmission <br> Reverse Match <br> Response <br> Response \& Isolation <br> TRL Thru <br> TRL Reflect <br> TRL Line/Match | OPEN <br> SHORT <br> LOAD <br> THRU <br> (OPEN, SHORT, and LOAD are set for each port; THRU is set between ports) |
|  |  | Class indication label |  | Editable | Not editable |
|  |  | Number of standards that can be registrated in calibration classes |  | Up to seven types | One type |
|  |  | Type of standard |  | OPEN, SHORT, LOAD, and THRU <br> Arbitrary Impedance | OPENOPEN, SHORT, LOAD, and THRU <br> Arbitrary Impedance, None |
|  |  | Standard parameters | Common to standards | Offset delay <br> Offset loss <br> Offset characteristic impedance <br> Frequency range <br> Offset type (coaxial, waveguide) | Offset delay <br> Offset loss <br> Offset characteristic impedance |
|  |  |  | Unique to OPEN | C0, C1, C2, C3 | $\leftarrow$ |
|  |  |  | Unique to SHORT | Not available | L0, L1, L2, L3 |
|  |  |  | Unique to LOAD | Type of standard (fixed, sliding, offset) | Not available (the type of standard is treated as fixed load.) |
|  |  |  | Unique to THRU | Not available | $\leftarrow$ |
|  |  |  | Arbitrary Impedance | Type of standard (fixed, sliding) Arbitrary Impedance | Arbitrary Impedance |
|  |  | Standard label |  | Editable | $\leftarrow$ |
|  | ECal | Type of calibration |  | Enhanced response calibration S11 1-port calibration S22 1-port calibration Full 2-port calibration | Response (thru) calibration Full 1-port calibration <br> Full 2-port calibration <br> Full 3-port calibration (Opts. $313 / 314 / 413 / 414)$ <br> Full 4-port calibration (Opts. 413/414) |
|  |  | Omission of isolation |  | Allowed | $\leftarrow$ |
|  |  | Manual THRU measurement |  | Allowed | Not allowed |
|  |  | Reading the frequency array |  | Allowed | Not allowed |
|  |  | Reading the module information |  | Allowed | Not allowed |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: |
| Reading/Writ ing data | Transfer format | Intra-device binary IEEE 32-bit floating point IEEE 64-bit floating point ASCII PC-DOS 32-bit floating point | IEEE 32-bit floating point IEEE 64-bit floating point ASCII PC-DOS 32-bit floating point |
|  | Object to be read/written | Raw data array <br> Calibration coefficient array (before interpolating) <br> Corrected data array <br> Formatted memory array <br> Memory trace <br> Calibration kit array data <br> Power meter calibration coefficient array (before interpolating) | Corrected data array <br> Corrected memory array <br> Formatted data array <br> Formatted memory array <br> Power meter calibration coefficient array (after interpolating) |
|  | Object to be read only | Pre-raw data (in Take4 mode) Calibration coefficient array (after interpolating) <br> Power meter calibration coefficient array (after interpolating) |  |
|  | Reading data for a designated point or scope | Allowed only for data traces | Not allowed |
| Marker | Number of markers | Up to five markers per channel | Nine markers per tracer (exclude reference marker) |
|  | Active marker | One marker per channel | One marker per trace |
|  | Delta marker (Reference marker) | Designates the marker displayed as the reference marker. | You can designate the reference marker independently from the markers displayed. |
|  | Marker coupling | Setting of Couple/Uncouple definable | Setting of Couple/Uncouple definable (coupling available only between markers on the same channel) |
|  | Marker move mode | Continuous/discrete (definable channel by channel) | Continuous/discrete (definable trace by trace) |
|  | Fixed marker | One marker definable per channel | Not available |
|  | Marker value display | On/Off setting for the marker value display definable per channel | All marker values for active traces are displayed on each channel. Display/No Display setting for the marker table displaying all marker values definable |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: |
| Markers (cont'd.) | Marker search | Search function | Maximum, minimum, target value, bandwidth | Maximum, minimum, target value, peak |
|  |  | Object of search | Active marker | Arbitrary marker (during remote control) <br> Active marker (when manipulating the front panel) |
|  |  | Parameters for bandwidth search | Bandwidth, bandwidth center frequency <br> Q factor, loss | Bandwidth, bandwidth center frequency Upper and lower frequency of the bandwidth <br> Q factor, loss |
|  |  | Target value | Definable for an active marker | Definable for each marker |
|  |  | Target transition type | Not definable | Setting of Positive/Negative transition definable (per marker) |
|  |  | Search tracking | On/Off setting definable for the active marker (Markers other than the active marker are always turned off.) | On/Off setting definable for each marker |
|  | Marker reading set at a parameter |  | Values of the start, stop, center, span, CW frequency, and reference line in the sweep range | Values of the start, stop, center, span, and reference line in the sweep range |
|  | Reading the marker value (for remote control) |  | Possible for the active marker | Possible for any marker |
| Device test | Limit test | Limit test table | One per channel Number of segments: Up to 18 per table | One per trace <br> Number of segments: Up to 100 per table |
|  |  | Offset | Definable | Not definable |
|  |  | Creating a table by using the GPIB command | Create a table by using two or more commands | Create a table by using one command |
|  |  | Reading the results | Per channel, Per segment Pass/fail at each point, Number of points per segment that failed the maximum/minimum, Stimulus value at a failed point | Pass/Fail of the active trace on each channel <br> Number of failed points Stimulus value at a failed point |
|  | Ripple test |  | Available | Not available |
|  | Bandwidth test |  | Available | Not available (Marker search function can be used for the bandwidth search.) |
| Analysis | Fixture simulator |  | Not available | Available |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function | 8753ES | E5070B/E5071B |
| :--- | :--- | :--- | :--- |

Table 6-5 Functions of the 8753ES vs. the E5070B/E5071B

| Function |  |  | 8753ES | E5070B/E5071B |
| :---: | :---: | :---: | :---: | :---: |
| Printer / <br> Plotter output | Print range |  | Entire sheet, 1/4 of a sheet | Entire sheet |
|  | Color settings |  | Settings definable for the colors of a trace, reference line, text, and warning messages | Highlighting/No highlighting of all elements |
|  | Line settings |  | Possible | Always a solid line. |
|  | Printer port |  | Parallel port Serial port GPIB | Parallel port <br> USB |
| Others | Time domain transformation |  | Available | $\leftarrow$ |
|  | Take 4 mode |  | Available | Not available |
|  | Mixer measurement function |  | Available | Not available |
|  | Harmonics measurement |  | Available (Opt. 002) | Not available |
|  | Key manipulation-related GPIB command |  | GPIB commands that perform the same processing as do the front panel key and softkey manipulation. | Not available |
|  | LAN | interface | Not available | 10 Base-T and 100 Base-TX |
|  |  | protocol | Not available | TCP/IP |
|  |  | function | Not available | Telnet, SICL-LAN |
|  | GPIB | Debug mode | Can be turned On/Off | Not available |
|  |  | pass control | Available | Not available |
|  |  | GPIB address setup | The addresses of the main body, controller, external disk, LO control, power meter, printer, and plotter can be specified by using the GPIB command and from the front panel. | The address of the main body can be specified from the front panel. The addresses of the power meter can be specified by using the GPIB command and from the front panel. |
|  |  | Parallel port | Can be used as a printer or GPIO connector. | For printer use |

## 7 <br> Comparing Commands of the 8753ES and E5070B/E5071B

The following table presents a comparison of commands on the Agilent 8753ES and Agilent E5070B/E5071B, listed alphabetically by function.

## 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Measurement | Reset |  | PRES | :SYST:PRES | After execution, the *RST on the E5070B/E5071B set the trigger state to Hold. |
|  |  |  | RST | *RST |  |
|  | Setting up the active channel | Channel 1 | CHAN1 | :DISP:WIND \{1-16\}:ACT <br> (Setting up the active channel) or :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ SEL <br> (Setting up an active trace on each channel) | The outline of channels and traces on the E5070B/E5071B is described in the "User's Guide." |
|  |  | Channel 2 | CHAN2 |  |  |
|  |  | Channel 3 | CHAN3 |  |  |
|  |  | Channel 4 | CHAN4 |  |  |
|  | Reading the active channel |  | OUTPCHAN | :DISP:WIND \{1-16\}:ACT? <br> (Reading the active channel) or :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ SEL? <br> (Reading the active trace on each channel) |  |
|  | Selection of measurement parameters | S11 | S11 ${ }^{* 1}$ | :CALC $\{1-16\}:$ PAR $\{1-16\}:$ DEF S $11{ }^{* 2}$ |  |
|  |  |  | RFLP*1 |  |  |
|  |  | S21 | $\mathrm{S} 21{ }^{*}$ | :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ DEF S21 ${ }^{* 2}$ |  |
|  |  |  | TRAP ${ }^{* 1}$ |  |  |
|  |  | S12 | S12 ${ }^{\text {* }}$ | :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ DEF S $12{ }^{* 2}$ |  |
|  |  | S22 | S22 ${ }^{\text {¹ }}$ | :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ DEF S22*2 |  |
|  |  | Aux Input | ANAI ${ }^{*}$ | Not available | E5070B/E5071B can select S-parameters only. |
|  |  | A/R | $\mathrm{AR}^{* 1}$ |  |  |
|  |  | B/R | $\mathrm{BR}^{* 1}$ |  |  |
|  |  | A/B | $\mathrm{AB}^{* 1}$ |  |  |
|  |  | A | MEASA ${ }^{* 1}$ |  |  |
|  |  | B | MEASB ${ }^{* 1}$ |  |  |
|  |  | R | MEASR ${ }^{* 1}$ |  |  |
|  |  | Designates a test port when parameters other than S-parameters are selected. | TSTP*1 |  |  |
|  | S-parameters conversion | Turning off the transformation function | CONVOFF* ${ }^{*}$ | :CALC $\{1-16\}: \mathrm{CONV}^{* 3}$ |  |
|  |  | Impedance (reflection) | CONVZREF*1 | :CALC $\{1-16\}$ :CONV:FUNC ZREF*3 |  |
|  |  | Impedance (transmission) | CONVZTRA*1 | :CALC $\{1-16\}$ :CONV:FUNC ZTR ${ }^{* 3}$ |  |
|  |  | Admittance (reflection) | CONVYREF*1 | :CALC $\{1-16\}$ :CONV:FUNC YREF*3 |  |
|  |  | $\begin{array}{\|l\|} \hline \text { Admittance } \\ \text { (transmission) } \end{array}$ | CONVYTRA*1 | :CALC $\{1-16\}$ :CONV:FUNC YTR ${ }^{* 3}$ |  |
|  |  | 1/S | CONV1DS* ${ }^{\text {1 }}$ | :CALC $\{1-16\}$ :CONV:FUNC INV*3 |  |


| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Measurement (cont'd.) | Setting up display formats (data formats) | Log magnitude format | LOGM ${ }^{1}$ | :CALC $\{1-16\}$ :FORM MLOG*3 | When the data format for the E5070B/E5071B is defined in Smith chart or polar format, the format for reading marker values is defined at the same time. |
|  |  | Phase format | PHAS* ${ }^{1}$ | :CALC $\{1-16\}$ :FORM PHAS ${ }^{* 3}$ |  |
|  |  | Group delay format | DELA ${ }^{*}$ | :CALC 1 1-16\}:FORM GDEL ${ }^{* 3}$ |  |
|  |  | Smith chart format | SMIC ${ }^{*}$ | $\begin{aligned} & \text { :CALC }\{1-16\}: \text { FORM SLIN }{ }^{* 3} \\ & : \text { CALC }\{1-16\}: \text { FORM SLOG } \\ & : \text { CALC }\{1-16\}: \text { FORM SCOM } \\ & : \text { CALC }\{1-16\}: \text { FORM SMI } \\ & \text { :FORM SADM } \end{aligned}$ |  |
|  |  | Polar format | POLA ${ }^{*}$ | $\begin{aligned} & \text { :CALC } 11-16\}: \text { FORM PLIN }{ }^{* 3} \\ & : \text { CALC } 11-16\}: \text { FORM PLOG } \\ & : \text { CALC }\{1-16\}: \text { FORM POL } \end{aligned}$ |  |
|  |  | Linear magnitude format | LINM ${ }^{* 1}$ | :CALC $\{1-16\}$ :FORM MLIN ${ }^{* 3}$ |  |
|  |  | SWR format | SWR ${ }^{*}$ | :CALC 1 1-16\}:FORM SWR ${ }^{\text {*3 }}$ |  |
|  |  | Real format | REAL ${ }^{*}$ | :CALC $11-16\}$ :FORM REAL ${ }^{* 3}$ |  |
|  |  | Imaginary format | IMAG ${ }^{* 1}$ | :CALC $\{1-16\}$ :FORM IMAG ${ }^{* 3}$ |  |
|  | Sweep type selection | Linear sweep | LINFREQ*1*4 | :SENS $\{1-16\}:$ SWE:TYPE LIN*5 | With theE5070B/E5071B, youcannot select the CWTIME seep. |
|  |  | Log sweep | LOGFREQ ${ }^{* 1 * 4}$ | :SENS $\{1-16\}$ :SWE:TYPE LOG*5 |  |
|  |  | List sweep | LISFREQ ${ }^{* 1 * 4}$ | :SENS 1 1-16\}:SWE:TYPE SEGM*5 |  |
|  |  | Power sweep | POWS*** | :SENS 1 1-16\}:SWE:TYPE POW*5 |  |
|  |  | CW TIME sweep | CWTIME ${ }^{*}{ }^{*} 4$ | Not available |  |
|  | Setting up the sweep range | Start value | STAR $^{* 1 * 4}$ | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { FREQ:STAR }{ }^{* 5} \\ & : \text { SOUR }\{1-16\}: \text { POW:STAR } \end{aligned}$ |  |
|  |  | Stop value | STOP $^{* 1 * 4}$ | :SENS $\{1-16\}$ :FREQ:STOP*5 :SOUR $\{1-16\}:$ POW:STOP*5 |  |
|  |  | Center value | CENT ${ }^{* 1 * 4}$ | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { FREQ:CENT }{ }^{* 5} \\ & : S O U R\{1-16\}: \text { POW:CENT } \end{aligned}$ |  |
|  |  | Span value | $\operatorname{SPAN}^{*}{ }^{*} 4$ | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { FREQ:SPAN }{ }^{* 5} \\ & : \text { SOUR }\{1-16\}: \text { POW:SPAN }{ }^{* 5} \end{aligned}$ |  |
|  | Sweep time | Setting up the sweep time | SWET $^{* 1 * 4}$ | :SENS $\{1-16\}:$ SWE:TIME ${ }^{* 5}$ |  |
|  |  | Automatic setting to the shortest time | SWEA $^{* 1 * 4}$ | $\begin{aligned} & \text { :SENS\{1-16\}:SWE:TIME:AUTO } \\ & \mathrm{ON}^{* 5} \end{aligned}$ |  |
|  | Specifying the number of points |  | POIN ${ }^{* 1 * 4}$ | :SENS\{1-16\}:SWE:POIN ${ }^{* 5}$ |  |
|  | Specifying the IF bandwidth |  | IFBW* ${ }^{*}{ }^{\text {4 }}$ | :SENS $\{1-16\}$ :BAND ${ }^{* 5}$ |  |
|  | Averaging | On/Off setting | AVERO $^{* 1 * 4}$ | :SENS $\{1-16\}:$ AVER $^{* 5}$ |  |
|  |  | Specifying the number of times | $\begin{aligned} & \text { AVERFACT }{ }^{* 1} \\ & * 4 \end{aligned}$ | :SENS $\{1-16\}: A V E R: C O U N * 5$ |  |
|  |  | Restart | ${\underset{* 4}{ } \text { AVERREST }^{* 1}}^{*}$ | :SENS $\{1-16\}:$ AVER:CLE ${ }^{* 5}$ |  |
|  | Specifying the power level |  | POWE ${ }^{* 1 * 4}$ | :SOUR $11-16\}: \mathrm{POW}^{* 5}$ | When the power range setting in one channel differs from that in another channel on the 8753ES, a sweep is not performed on channels whose settings are different from those on the active channel. |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)


| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Measurement (cont'd.) | Selecting list mode |  | Stepped mode |  | $\begin{aligned} & \text { LISTTYPELST } \\ & \mathrm{P} \end{aligned}$ | :SENS\{1-16\}:SWE:GEN STEP | On the E5070B/E5071B, the IF bandwidth and power level can be set segment by segment even in swept mode.In addition, you can select stepped/swept mode for the linear sweep. |
|  |  |  | Swept mode |  | $\begin{aligned} & \text { LISTTYPELSW } \\ & \mathrm{P} \end{aligned}$ | :SENS\{1-16\}:SWE:GEN ANAL |  |
|  | Setting up segments for the list frequency sweep |  | All segments are used. |  | ASEG | Not available | In its segment sweep operation, the E5070B/E5071B sweeps all segments. |
|  |  |  | Only designated segments are used. |  | SSEG | Not available |  |
|  | Smoothi ng | On/Off setting |  |  | SMOOO* ${ }^{\text {* }}$ | :CALC $\{1-16\}: \mathrm{SMO}^{*} 3$ |  |
|  |  | Setting up the smoothing aperture |  |  | SMOOAPER ${ }^{* 1}$ | :CALC $\{1-16\}$ :SMO:APER*3 |  |
|  |  | Reading the smoothing aperture |  | \% | SMOOAPER?*1 | :CALC $\{1-16\}$ :SMO:APER?*3 |  |
|  |  |  |  | Unit for stimulus values | OUTPAPER*1 | Not available |  |
|  | Setting the electrical delay | Setting values |  |  | ELED ${ }^{* 1}$ | :CALC 1 1-16\}:CORR:EDEL:TIME*3 |  |
|  |  | Setting types | Coaxial cable |  | COAD ${ }^{1}$ | Not available | The E5070B/E5071B is compatible with coaxial cables only. |
|  |  |  | A waveguide is selected and the cut-off frequency is specified. |  | WAVD $^{* 1}$ | Not available |  |
|  | Specifying the phase offset |  |  |  | PHAO* ${ }^{1}$ | :CALC $\{1-16\}$ :CORR:OFFS:PHAS*3 |  |
|  | Setting sweep conditions at Couple/Uncouple between channels |  |  |  | COUC | Traces are coupled on the same channel and not coupled between channels. | On the 8753ES, coupling between channels 1 and 2 is set at On/Off. Channels 1 and 3 and channels 2 and 4 are always coupled |
|  | Setting the trigger mode | Continuous sweep |  |  | CONT ${ }^{*}{ }^{*} 4$ | :INIT $\{1-16\}:$ CONT ON*5 | On the E5070B/E5071B, specified number mode cannot be selected. |
|  |  |  |  |  | $\mathrm{FRER}^{* 1 * 4}$ |  |  |
|  |  | Single sweep |  |  | SING ${ }^{*}{ }^{* 4}$ | $\begin{aligned} & \hline: \text { ABOR } \\ & : \text { INIT }\{1-16\}: \text { CONT OFF }^{* 5} \\ & : \text { INIT }\{1-9\} \\ & (\text { These commands must be sent.) } \end{aligned}$ |  |
|  |  | specifying number of sweeps |  |  | NUMG ${ }^{*}{ }^{*} 4$ | Not available |  |
|  |  | Hold |  |  | HOLD ${ }^{* 1 * 4}$ | :INIT $\{1-16\}$ :CONT OFF*5 |  |
|  |  | Setting up external trigger | Per sweep |  | EXTTON | :TRIG:SOUR EXT*5 | On the E5070B/E5071B, the per-sweep setting is valid when the external trigger mode is ON. A manual trigger at each point is not available. The external trigger line is set to Low. |
|  |  |  | Per point |  | EXTTPOIN | Not available |  |
|  |  |  | Off |  | EXTTOFF | In :TRIG:SOUR, setting the parameter to EXT causes external trigger mode to automatically turn OFF. |  |
|  |  |  | Triggerline | High | EXTTHIGH | Not available |  |
|  |  |  |  | Low | EXTTLOW | Not available |  |
|  |  | Manual (at each point) |  |  | MANTRIG | Not available |  |
|  | Suspend sweep and then resume. |  |  |  | REST | Not available |  |
|  | Specifying the signal source frequency for the power level sweep or CW TIME sweep |  |  |  | CWFREQ*1*4 | :SENS 1 1-16\}:FREQ |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Screen display | Setting up the active channel | Channel 1 <br> Channel 2 <br> Channel 3 <br> Channel 4 | CHAN1 | :DISP:WIND $\{1-16\}: A C T$ <br> (Setting up the active channel) or :CALC $\{1-16\}$ :PAR $\{1-16\}$ :SEL (Setting up the active trace) | The concepts of a channel and a trace on the E5070B/E5071B are different. For more information, refer to the individual Userís Guides. |
|  | Channel memory | Copying a data trace into the channel memory. | DATI ${ }^{* 1}$ | :CALC 1 1-16\}:MATH:MEM ${ }^{* 3}$ |  |
|  |  | Display a data trace only. | DISPDATA ${ }^{* 1}$ | :DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}:$ ST AT ON | The last command to be sent by the E5070B/E5071B is the one effective for the active trace. This requires the trace in question to be made the active one before being sent. |
|  |  | The data trace and memory trace are displayed at the same time. | DISPDATM ${ }^{* 1}$ | $:$ DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}:$ ST AT ON |  |
|  |  | Display the result of dividing the data trace by the memory trace. | $\begin{array}{\|l\|} \hline \text { DISPDDM }^{* 1} \\ \hline \text { DIVI }^{* 1} \end{array}$ | :DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}:$ ST AT ON |  |
|  |  | Display the result of dividing the data trace by the memory trace. | DISPDMM | $\begin{aligned} & : \text { DISP:WIND }\{1-16\}: \text { TRAC }\{1-16\}: \text { ST } \\ & \text { AT ON } \end{aligned}$ |  |
|  |  | Display the memory trace only. | DISPMEMO*1 | $:$ DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}:$ ST AT OFF :2 :DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}:$ ME M ON 2 (Both commands above must be sent.) |  |
|  |  | Sending the title to the memory trace | TITTMEM ${ }^{* 1}$ | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| Screen display (cont'd.) | Turns off the frequency display on the LCD. |  |  | FREO | :DISP:ANN:FREQ OFF | The 8753ES and E5070B/E5071B are both effective on all channels. |
|  | Display channel 2 data/channel 1 data in channel 2. |  |  | D1DIVD2 | Not available |  |
|  | On/Off setting for Channels 3 and 4 |  |  | AUXC | :CALC $\{1-16\}$ :PAR:COUN <br> (Specifying the number of traces) enables you to perform the equivalent. |  |
|  | On/Off setting for simultaneous display of two channels |  |  | DUAC | :DISP:SPL (Setting up a window array in a channel) and :DISP:WIND $\{1-16\}$ :SPL (Setting up an array of trace graphs) are combined to perform the equivalent. |  |
|  | Graph layout | On/Off setting for display splitting |  | SPLD | :DISP:SPL (Setting up a window array in a channel) and :DISP:WIND $\{1-16\}:$ SPL (Setting up an array of trace graphs) are combined to perform the equivalent. |  |
|  |  | Specifying the number of screens |  | SPLID1 |  |  |
|  |  |  |  | SPLID2 |  |  |
|  |  |  |  | SPLID4 |  |  |
|  |  | Upper screen (Channels 1 and 2) and lower screen (Channels 3 and 4) |  | D2XUPCH2 | Not available |  |
|  |  | Upper screen (Channels 1 and 3) and lower screen (Channels 2 and 4) |  | D2XUPCH3 | :DISP:SPL (Setting up a window array in a channel) and :DISP:WIND $\{1-16\}$ :SPL (Setting up an array of trace graphs) are combined |  |
|  |  | Upper left (Channel 1), upper right (Channel 2), lower left (Channel 3), lower right (Channel 4) |  | D4XUPCH2 | to perform the equivalent. |  |
|  |  | Upper left (Channel 1), upper right (Channel 3), lower left (Channel 2), lower right (Channel 4) |  | D4XUPCH3 | Not available |  |
|  | Setting up a scale | Executing autoscale |  | AUTO $^{* 1}$ | $\begin{aligned} & \text { :DISP:WIND }\{1-16\}: \text { TRAC }\{1-16\}: \mathrm{Y}: \mathrm{A} \\ & \text { UTO }^{* 2} \end{aligned}$ |  |
|  |  | Setting values |  | SCAL ${ }^{* 1}$ | $\begin{aligned} & : \text { DISP:WIND }\{1-16\}: T R A C\{1-16\}: Y: P \\ & \text { DIV }^{* 2} \end{aligned}$ |  |
|  | Setting the reference line | Position |  | REFP*1 | $\begin{aligned} & \text { :DISP:WIND }\{1-16\}: \text { TRAC }\{1-16\}: Y: R \\ & \text { POS }^{* 2} \end{aligned}$ | On the 8753ES, reference lines are set at graticule |
|  |  | Value |  | REFV* ${ }^{1}$ | $\begin{aligned} & : \text { DISP:WIND }\{1-16\}: \text { TRAC }\{1-16\}: Y: R \\ & \text { LEV }^{* 2} \end{aligned}$ | The E5070B/E5071B allows the number of graticule lines to be changed; you can place as many graticule lines as you need, from zero to the specified number of lines. |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)


Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration | Displaying the softkeys in the calibration menu |  | CAL1 | Not available |  |
|  | Selecting a calibration kit | $\begin{aligned} & \text { 2.4 mm Calibration Kit } \\ & (85056 \mathrm{~A} / \mathrm{D}) \end{aligned}$ | CALK24MM ${ }^{*}$ | :SENS $11-16\}:$ CORR:COLL $:$ CKIT ${ }^{* 5}$ |  |
|  |  | 2.92 mm Calibration Kit | $\begin{aligned} & \text { CALK292MM* } \\ & 6 \end{aligned}$ |  |  |
|  |  | 2.92 mm Calibration <br> Kit (85056K) | CALK292S* ${ }^{*}$ |  |  |
|  |  | $\begin{aligned} & 3.5 \mathrm{~mm} \text { Calibration Kit } \\ & (85033 \mathrm{C}) \end{aligned}$ | CALK35MC*6 |  |  |
|  |  | $\begin{aligned} & 3.5 \mathrm{~mm} \text { Calibration Kit } \\ & (85033 \mathrm{D}) \end{aligned}$ | CALK35MD* ${ }^{\text {* }}$ |  |  |
|  |  | $\begin{aligned} & \text { 7-16 Calibration Kit } \\ & \text { (85038) } \end{aligned}$ | CALK716*6 |  |  |
|  |  | $\begin{aligned} & 7 \mathrm{~mm} \text { Calibration Kit } \\ & (85031 \mathrm{~B}) \end{aligned}$ | CALK7MM ${ }^{*} 6$ |  |  |
|  |  | N-type 50 Calibration Kit (85032B/E) | CALKN50*6 |  |  |
|  |  | N-type 75 Calibration Kit (85036B/E) | CALKN75*6 |  |  |
|  |  | $\begin{aligned} & \hline \text { TRL } 3.5 \mathrm{~mm} \\ & \text { Calibration Kit } \\ & \text { (85052C) } \end{aligned}$ | CALKTRLK ${ }^{* 6}$ |  |  |
|  |  | User-defined calibration kit | CALKUSED* ${ }^{*}$ |  |  |
|  | Starting the calibration | Forward enhanced response calibration | CALIERC* ${ }^{*}$ | Not available (Enhanced response calibration function not available.) |  |
|  |  | Reverse enhanced response calibration | CALIRERC* ${ }^{\text {1 }}$ |  |  |
|  |  | Response calibration | CALIRESP* ${ }^{*}$ |  | The E5070B/E5071B uses different commands depending on the standard used. <br> Isolation can be performed optionally. <br> Calibration type can be set after measuring standard on the E5070B/E5071B |
|  |  | Response \& isolation calibration | CALIRAI* ${ }^{\text {¹ }}$ |  |  |
|  |  | S11 1-port calibration | CALIS $111{ }^{* 1}$ | :SENS $\{1-16\}:$ CORR:COLL:METH:S OLT1 ${ }^{* 5}$ | The E5070B/E5071B requires a port to be assigned to a command parameter. |
|  |  | S22 1-port calibration | CALIS221*1 |  |  |
|  |  | Full 2-port calibration | CALIFUL2*1 | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:METH:S } \\ & \text { OLT2 }^{* 5} \end{aligned}$ |  |
|  |  | TRL*/LRM* <br> Calibration | CALITRL2 ${ }^{* 1}$ | Not available | The E5070B/E5071B supports the TRL calibration function using VBA. |

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration (cont'd.) | Finishing the calibration and calculating the calibration coefficients. | Forward enhanced response calibration | ERCDONE*1 | Not available | The E5070B/E5071B does not have the enhanced response calibration function. |
|  |  |  | SAVERC* ${ }^{1}$ |  |  |
|  |  | Reverse enhanced response calibration | RERCDONE*1 |  |  |
|  |  |  | SAVRERC ${ }^{* 1}$ |  |  |
|  |  | Response calibration | RESPDONE*1 | :SENS 1 1-16\}:CORR:COLL:SAVE ${ }^{* 5}$ | The E5070B/E5071B allows you to use the same command to finish calibration regardless of the type of calibration. |
|  |  | Response \& isolation calibration | RAID ${ }^{* 1}$ |  |  |
|  |  | $\begin{aligned} & \text { S11 1-port calibration } \\ & \text { or S22 1-port } \\ & \text { calibration } \end{aligned}$ | SAV1*1 |  |  |
|  |  | Full 2-port calibration | SAV2*1 |  |  |
|  |  | TRL*/LRM* calibration | SAVT ${ }^{* 1}$ | Not available | The E5070B/E5071B supports the TRL calibration function using VBA. |
|  | Starting calibration data measurement | Reflection measurement <br> (Enhanced response <br> calibration) | REFOP*1 | Not available | The E5070B/E5071B does not have the enhanced response calibration function. |
|  |  | Reflection measurement <br> (2-port calibration) | REFL ${ }^{* 1}$ | Not available |  |
|  |  | Transmission measurement (enhanced response calibration) | TRAOP* ${ }^{1}$ |  |  |
|  |  | Transmission <br> measurement (2-port <br> calibration) | TRAN ${ }^{*}$ |  |  |
|  |  | Forward transmission measurement (2-port calibration) | $\mathrm{FWDT}^{*} 1$ | :SENS $\{1-16\}:$ CORR:COLL:THRU*5 | The E5070B/E5071B performs both transmission and of match measurements. |
|  |  | Forward match measurement (2-port calibration) | FWDM ${ }^{* 1}$ |  |  |
|  |  | Reverse transmission measurement (2-port calibration) | REVT ${ }^{* 1}$ |  |  |
|  |  | Forward match measurement (2-port calibration) | $\mathrm{REVM}^{*} 1$ |  |  |
|  |  | Response measurement <br> (response \& isolation <br> calibration) | RAIRESP* ${ }^{*}$ | :SENS $\{1-16\}:$ CORR:COLL:OPEN ${ }^{* 5}\left(\begin{array}{l}\text { Open) } \\ \text { :SENS }\{1-16\}: \text { CORR:COLL:SHOR }\end{array}\right.$ | The E5070B/E5071B uses different commands depending on the standard used. |
|  |  | Isolation measurement (response Åïisolation calibration) | RAIISOL* ${ }^{\text {1 }}$ | :SENS 1 1-16\}:CORR:COLL:ISOL*5 |  |
|  |  | Isolation measurement <br> (enhanced response <br> calibration) | ISOOP** | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command ( | footnotes, see page 116.) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration (cont'd.) | Starting calibration data measurement (cont'd.) | Isolation measurement (2-port calibration) |  | ISOL ${ }^{*}$ | Not available |  |
|  |  | Forward isolation measurement (2-port calibration) |  | FWDI ${ }^{*}$ | :SENS 1 1-16\}:CORR:COLL:ISOL*5 |  |
|  |  | Reverse isolation measurement (2-port calibration) |  | REVI ${ }^{* 1}$ | :SENS 1 1-16\}:CORR:COLL:ISOL*5 |  |
|  |  | S11A (OPEN) <br> Measurement |  | CLASS11A* ${ }^{\text {¹ }}$ | :SENS $\{1-16\}$ :CORR:COLL:OPEN ${ }^{* 5}$ |  |
|  |  | $\begin{aligned} & \text { S11B (SHORT) } \\ & \text { Measurement } \end{aligned}$ |  | CLASS11B*1 | :SENS $\{1-16\}$ :CORR:COLL:SHOR ${ }^{\text {5 }}$ |  |
|  |  | $\begin{aligned} & \hline \text { S11C (LOAD) } \\ & \text { Measurement } \end{aligned}$ |  | CLASS11C* ${ }^{\text {* }}$ | :SENS $\{1-16\}$ :CORR:COLL:LOAD*5 |  |
|  |  | S22A (OPEN) <br> Measurement |  | CLASS22A* ${ }^{*}$ | :SENS $\{1-16\}$ :CORR:COLL:OPEN ${ }^{* 5}$ |  |
|  |  | S22B (SHORT) <br> Measurement |  | CLASS22B*1 | :SENS $\{1-16\}$ :CORR:COLL:SHOR ${ }^{\text {5 }}$ |  |
|  |  | S22C (LOAD) <br> Measurement |  | CLASS22C* ${ }^{\text {* }}$ | :SENS $\{1-16\}$ :CORR:COLL:LOAD*5 |  |
|  |  | Offset and LOAD measurem ent | Measureme nt without offset | LOAN $^{* 1}$ | Not available | The E5070B/E5071B handles LOAD as a fixed load. |
|  |  |  | Measureme nt with offset | LOAO* ${ }^{\text {¹ }}$ |  |  |
|  |  | Sliding <br> LOAD <br> measurem ent | Measureme <br> nt after <br> sliding$\|$ | $\begin{array}{\|l} \text { SLIS }^{* 1} \\ \text { SLID }^{* 1} \end{array}$ | Not available |  |
|  |  | Selecting the standard to be measured (correspon ding to the softkeys) | 1st from the top | STANA*1 | Not available | The E5070B/E5071B has only one type of standard that can be registered in each calibration class; therefore, no corresponding command exists. |
|  |  |  | 2nd from the top | STANB*1 |  |  |
|  |  |  | 3rd from the top | STANC* ${ }^{\text {* }}$ |  |  |
|  |  |  | 4th from the top | STAND*1 |  |  |
|  |  |  | 5th from the top | STANE*1 |  |  |
|  |  |  | 6th from the top | STANF*1 |  |  |
|  |  |  | 7th from the top | STANG ${ }^{*}$ |  |  |
|  |  | THRU measurement |  | TRLT ${ }^{*}$ | Not available | The E5070B/E5071B |
|  |  | S11 Reflection measurement |  | TRLR1*1 | Not available | supports the TRL calibration function using |
|  |  | S22 Reflection measurement |  | TRLR2*1 | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration (cont'd.) | Starting calibration data measurement (cont'd.) | Port 1 Line/Match measurement Port 2 Line/Match measurement | TRLL1 ${ }^{\text {* }}$ | Not available | The E5070B/E5071B supports the TRL calibration function using VBA. |
|  |  | Finishing measuring the standard | DONE ${ }^{* 1}$ | Not available | The 8753ES requires this to be executed when two or more standards exist in the calibration class. <br> The E5070B/E5071B allows only one type of standard to be registered in each calibration class. |
|  | Finishing measuring calibration data | Reflection measurement | REFD* ${ }^{*}$ | Not available | The E5070B/E5071B has no similar commands. |
|  |  | Transmission measurement | TRAD ${ }^{* 1}$ | Not available |  |
|  |  | Isolation measurement | ISOD ${ }^{* 1}$ | Not available |  |
|  |  | Offset and LOAD measurement | OFLD ${ }^{* 1}$ | Not available | The E5070B/E5071B does not handle offset and LOAD. |
|  | Setting error correction On/Off | On/Off setting | CORR ${ }^{*}{ }^{* 4}$ | :SENS $\{1-16\}$ :CORR:STAT ${ }^{* 5}$ |  |
|  |  | Setting to OFF | $\mathrm{CALN}^{* 1 * 4}$ | :SENS $\{1-16\}$ :CORR:STAT OFF*5 |  |
|  | On/Off setting for error correction by interpolation of calibration coefficients |  | CORI ${ }^{* 1 * 4}$ | Not available | Always On on the E5070B/E5071B |
|  | Omitting the isolation measurement |  | OMII ${ }^{* 1}$ | Not available | On the E5070B/E5071B, isolation measurement is optional. |
|  | Setting up the characteristic impedance of the measurement system |  | SETZ*6 | :CALC $\{1-16\}:$ FSIM:SEND:ZCON:PO RT $\{1-4\}: Z 0^{* 5}$ (Fixture simulator) | The E5070B/E5071B enables you to do the equivalent by using the fixture simulator. |
|  | Specifying the velocity factor |  | VELOFACT*6 | :SENS $\{1-16\}$ :CORR:RVEL:COAX ${ }^{\text {5 }}$ |  |
|  | Setting up port extension correction | On/Off | PORE*6 | :SENS $\{1-16\}$ :CORR:EXT*5 |  |
|  |  | Corrected value for port 1 | PORT1 ${ }^{* 6}$ | $\begin{aligned} & : \operatorname{SENS}\{1-16\}: C O R R: E X T: P O R T \\ & * 5 \end{aligned}$ |  |
|  |  | $\begin{aligned} & \text { Corrected value for port } \\ & 2 \end{aligned}$ | PORT2 ${ }^{* 6}$ |  |  |
|  |  | Corrected value for input A | PORTA*6 | Not available | The E5070B/E5071B does not have the input port extension function. |
|  |  | Corrected value for input B | PORTB*6 |  |  |



Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration (cont'd.) | Powermetercalibration(cont'd.) | Power loss list editing | Start |  | POWLLIST | :SOUR 1 1-16\}:POW:PORT 1 1-4\}:COR |  |
|  |  |  | Deleting the entire list |  | CLEL | R:COLL:TABL:LOSS:DATA *5 |  |
|  |  |  |  |  | CLEAL |  |  |
|  |  |  | Editing segments | Selection | SEDI |  |  |
|  |  |  |  | Addition | SADD |  |  |
|  |  |  |  | Deletion | SDEL |  |  |
|  |  |  |  | End | SDON |  |  |
|  |  |  |  | Frequency | POWLFREQ |  |  |
|  |  |  |  | Loss | POWLLOSS |  |  |
|  |  | Specifying the number of measurements per point |  |  | NUMR | $\begin{aligned} & \text { :SOUR }\{1-16\}: \text { POW:PORT }\{1-4\}: \text { COR } \\ & \text { R:COLL:AVER*5 } \end{aligned}$ |  |
|  |  | Defining the GPIB reading from the power meter as the title |  |  | PMTRTTIT | Not available |  |
|  |  | Selecting a power sensor |  | Sensor A | USESENSA*1*4 | Not available |  |
|  |  |  |  | Sensor B | USESENSB ${ }^{* 1 * 4}$ |  |  |
|  |  | Executin <br> g a <br> calibrati on | Per sweep |  | PWMCEACS*1 | Not available | The E5070B/E5071B does not have per sweep mode. |
|  |  |  | One time |  | PWMCONES ${ }^{* 1}$ | $\begin{aligned} & : S O U R\{1-16\}: P O W: P O R T\{1-4\}: C O R \\ & R^{* 5} \end{aligned}$ |  |
|  |  |  | Off |  | PWMCOFF* ${ }^{\text {1 }}$ |  |  |
|  |  | Specifying to Use/Not Use the power loss list |  |  | PWRLOSS ${ }^{* 1 * 4}$ | $\begin{aligned} & \text { :SOUR }\{1-16\}: \text { POW:PORT }\{1-4\}: \text { COR } \\ & \text { R:COLL:TABL:LOSS* } \end{aligned}$ |  |
|  | Defining the calibrati on kit | Start of defining the calibration kit |  |  | MODI1 | Not available | The E5070B/E5071B has no command for starting/ending kit definition. The calibration kit assigned for each channel is already defined. |
|  |  | End of defining the calibration kit |  |  | STDD | Not available |  |
|  |  | Setting up the calibration kit label |  |  | LABK | :SENS \{1-16\}:CORR:COLL:CKIT:LA B |  |
|  |  | Defining the selected calibration kit as a user calibration kit |  |  | SAVEUSEK | Not available | On the E5070B/E5071B, Any calibration kit numbers can be assigned as user calibration kits. |
|  |  | Defining the calibrati on class | S11A (OPEN) |  | SPECS11A | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:OR } \\ & \text { D:OPEN } \end{aligned}$ | The E5070B/E5071B uses a parameter to |
|  |  |  | S11B (SHORT) |  | SPECS11B | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:OR } \\ & \text { D:SHOR } \end{aligned}$ | specify a port. |
|  |  |  | S11C (LOAD) |  | SPECS11C | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:OR } \\ & \text { D:LOAD } \end{aligned}$ |  |
|  |  |  | S22A (OPEN) |  | SPECS22A | $\begin{aligned} & \text { :SENS\{1-16\}:CORR:COLL:CKIT:OR } \\ & \text { D:OPEN } \end{aligned}$ |  |
|  |  |  | S22B (SHORT) |  | SPECS22B | :SENS $\{1-16\}:$ CORR:COLL:CKIT:OR D:SHOR |  |
|  |  |  | S22C (LOAD) |  | SPECS22C | :SENS \{1-16\}:CORR:COLL:CKIT:OR D:LOAD |  |
|  |  |  | Forward match |  | SPECFWDM | :SENS $\{1-16\}:$ CORR:COLL:CKIT:ORD:THRU(definition of the calibration classTHRU) | Registering a standard in the THRU calibration class on the E5070B/E5071B is equivalent to registering one standard in four types of calibration classes on the 8753ES. |
|  |  |  | Forward transmission |  | SPECFWDT |  |  |
|  |  |  | Reverse match |  | SPECREVM |  |  |
|  |  |  | Reverse transmission |  | SPECREVT |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)


Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration (cont'd.) | Defining the calibrati on kit (cont'd.) | End of defining the standards |  |  | KITD | Not available |  |
|  |  | Setting up the standard label |  |  | LABS | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: \text { LAB } \end{aligned}$ |  |
|  |  | Setting up the type of standard | OPEN stand | dard | STDTOPEN | :SENS $\{1-16\}:$ CORR:COLL:CKIT:ST AN $\{1-21\}$ :TYPE OPEN |  |
|  |  |  | SHORT stan | andard | STDTSHOR | :SENS $\{1-16\}:$ CORR:COLL:CKIT:ST AN 1 1-21\}:TYPE SHOR |  |
|  |  |  | LOAD stan | dard | STDTLOAD | :SENS \{1-16\}:CORR:COLL:CKIT:ST AN $\{1-21\}:$ TYPE LOAD |  |
|  |  |  | THRU stan | dard | STDTDELA | $\text { :SENS \{1-16\}:CORR:COLL:CKIT:ST }$ $\text { AN }\{1-21\}: \text { TYPE THRU }$ |  |
|  |  |  | Arbitrary im | mpedance | STDTARBI | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: \text { TYPE ARBI } \end{aligned}$ |  |
|  |  | Specifyi <br> ng the <br> calibrate <br> d value <br> of a <br> standard | Offset delay |  | OFSD | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN } 1-21\}: \text { DEL } \end{aligned}$ | Setup items of the calibrated value are the same as standard type items. |
|  |  |  | Offset loss |  | OFSL | $\begin{aligned} & : \text { SENS }\{1-16\}: C O R R: C O L L: C K I T: S T ~ \\ & \text { AN }\{1-21\}: \text { LOS } \end{aligned}$ |  |
|  |  |  | Offset impedance |  | OFSZ | $\begin{aligned} & : \text { SENS }\{1-16\}: C O R R: C O L L: C K I T: S T ~ \\ & \text { AN }\{1-21\}: Z 0 \end{aligned}$ |  |
|  |  |  | C0 |  | C0 | $\begin{aligned} & : \text { SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: C 0 \end{aligned}$ | Setup is effective for theOPEN standard only.(8753ES/E5070B/E5071B Common) |
|  |  |  | C1 |  | C1 | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: \mathrm{C} 1 \end{aligned}$ |  |
|  |  |  | C2 |  | C2 | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: \text { C2 } \end{aligned}$ |  |
|  |  |  | C3 |  | C3 | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: \text { C3 } \end{aligned}$ |  |
|  |  |  | Terminal impedance |  | TERI | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:ST } \\ & \text { AN }\{1-21\}: \text { ARB } \end{aligned}$ | Setup can be performed only when Arbitrary Impedance is used for setup. (8753ES/E5070B/E5071 B Common) |
|  |  |  | Types of LOAD standards | Fixed | FIXE | Not available | The E5070B/E5071B handles all as fixed load. |
|  |  |  |  | Sliding | SLIL |  |  |
|  |  |  |  | Offset | OFLS |  |  |
|  |  |  | $\begin{array}{\|l\|} \hline \text { Frequency } \\ \text { range } \end{array}$ | Minimum | MINF | Not available | The E5070B/E5071B does not allow you to set the frequency range. |
|  |  |  |  | Maximum | MAXF |  |  |
|  |  |  | Setting up the offset type | Coaxial <br> cable <br> Wave guide | COAX | Not available | The E5070B/E5071B treats the offset type as a coaxial cable. |
|  |  | End of defining standards |  |  | STDO | Not available | The E5070B/E5071B does not have the command for ending definition. |
|  |  | Options <br> for <br> TRL*/ <br> LRM $^{*}$ <br> calibrati <br> on. | Specifying the characteris tic impedance | Standard | CALZLINE | Not available | The E5070B/E5071Bsupports the TRLcalibration function usingVBA. |
|  |  |  |  | System | CALZSYST |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Calibration (cont'd.) | ECal | Setting up the active module |  | $\begin{array}{\|l\|} \hline \mathrm{A} \\ \hline \mathrm{~B} \\ \hline \end{array}$ | ECALMODSEL <br> A <br> ECALMODSEL <br> B | Not available | E5070B/E5071B activate the ECal module connected first. |
|  |  | Executin <br> g <br> calibrati <br> on | Forward enhanced response calibration <br> Reverse enhanced response calibration |  | ECALERC | Not available <br> Not available | The E5070B/E5071B does not allow you to perform an enhanced response calibration. |
|  |  |  | 1-port calibration | S11 | ECALS11 | :CALC $\{1-16\}$ :CORR:COLL:ECAL:S OLT1 1 |  |
|  |  |  |  | S22 | ECALS22 | :CALC $\{1-16\}$ :CORR:COLL:ECAL:S OLT1 2 |  |
|  |  |  | Full 2-port calibration |  | ECALS22 | :CALC $\{1-16\}$ :CORR:COLL:ECAL:S OLT2 |  |
|  |  |  | Turning the omission of isolation On/Off |  | ECALOMII | :CALC\{1-16\}:CORR:COLL:ECAL:IS OL | When the E5070B/E5071B is turned on, the 8753ES is turned off, and vice versa. |
|  |  |  | Designating the averaging factor for isolation |  | ECALISOAVG | Not available |  |
|  |  | Module informat ion | Reading the selected module |  | ECALAB? | Not available |  |
|  |  |  | Reading the product number and serial number |  | ECALMODID |  |  |
|  |  | $\begin{array}{\|l} \hline \text { Calibrati } \\ \text { on } \\ \text { frequenc } \\ \text { y array } \end{array}$ | Reading the frequency array |  | ECALFREQS | Not available |  |
|  |  |  | Designating the size of the frequency array to be read |  | ECALNFREQS |  |  |
|  |  | Interrupt ion | Turning Manual THRU Measurement On/Off |  | $\begin{aligned} & \text { ECALMANTH } \\ & \text { RU } \end{aligned}$ | Not available | E5070B/E5071B can not pause the ECal. |
|  |  |  | Reading during Interruption/Execution |  | ECALPAUSED |  |  |
|  |  |  | Resuming a suspended ECal |  | ECALCONT |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)


Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)


Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| Markers | Activate the marker and move it to the designated stimulus value. |  | Marker 1 <br> Marker 2 <br> Marker 3 <br> Marker 4 <br> Marker 5 | MARK1 ${ }^{\text {¹ }}$ MARK2 | :CALC $\{1-16\}:$ MARK $\{1-10\}:$ ACT $^{* 7}$ (Setting up the active marker) :CALC $\{1-16\}:$ MARK $\{1-10\}: X^{* 7}$ (Specifying the stimulus value of the marker) <br> These two commands enables you to perform the equivalent. |  |
|  | Move to the designated point |  |  | MARKBUCK ${ }^{* 8}$ | Not available |  |
|  | Setting up the marker move mode | Continuous mode |  | MARKCONT ${ }^{* 8}$ | :CALC $\{1-16\}$ :MARK $\{1-10\}:$ DISC $\mathrm{OFF}^{* 5}$ |  |
|  |  | Discrete mode |  | MARKDISC** | :CALC $\{1-16\}$ :MARK $\{1-10\}:$ DISC $\mathrm{ON}^{* 5}$ |  |
|  | Specifying <br> Couple/Uncouple between channels | Couple |  | MARKCOUP*8 | :CALC $\{1-16\}:$ MARK $\{1-10\}:$ COUP $\mathrm{ON}^{* 5}$ | On the E5070B/E5071B, Couple/Uncouple |
|  |  | Uncouple |  | MARKCOUP*8 | $\begin{aligned} & : \operatorname{CALC}^{2}\{1-16\}: \operatorname{MARK}\{1-10\}: \operatorname{COUP} \\ & \mathrm{OFF}^{* 5} \end{aligned}$ | between traces in the same channel is specified. |
|  | On/Off setting for all marker value displays |  |  | DISM ${ }^{* 1}$ | Not available | The E5070B/E5071B always displays all marker values. |
|  | Turning off all markers and the marker function |  |  | MARKOFF* ${ }^{\text {1 }}$ | :CALC $\{1-16\}: \operatorname{MARK}\{1-10\}^{* 7}$ can be used to turn off the marker display but the function remains turned on) |  |
|  | Delta marker(Reference marker) | Turning off the delta marker |  | DELO* ${ }^{*}$ | :CALC $\{1-16\}$ :MARK:REF OFF*3 | The E5070B/E5071B assigns marker 10 as the |
|  |  | Designating a delta marker |  | DELR ${ }^{* 1}$ | Not available | delta marker. |
|  | Designating the position of a fixed marker | Auxiliary measured value |  | MARKFAUV*1 | Not available | The E5070B/E5071B does not have the fixed marker function. |
|  |  | Stimulus value |  | MARKFSTI* ${ }^{\text {* }}$ |  |  |
|  |  | Designated point |  | MARKFVAL ${ }^{* 1}$ |  |  |
|  |  | Position of the active marker |  | MARKZERO*1 |  |  |
|  |  | Designating a fixed marker as the reference marker |  | DELRFIXM*1 |  |  |
|  | Selecting readout format on a Smith chart | Admittance |  | SMIMGB | Not available | On the E5070B/E5071B, readout format is specified when setting up data format. |
|  |  | Linear magnitude |  | SMIMLIN |  |  |
|  |  | Log magnitude |  | SMIMLOG |  |  |
|  |  | Real/Imaginary |  | SMIMRI |  |  |
|  |  | Impedance |  | SMIMRX |  |  |
|  | Selecting readout format on a polar display | Linear magnitude |  | POLMLIN |  |  |
|  |  | Log magnitude |  | POLMLOG |  |  |
|  |  | Real/Imaginary |  | POLMRI |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| Markers (cont'd.) | Setting the marker value at a different value |  | Starting value for the sweep range | MARKSTAR ${ }^{*}$ | $\begin{aligned} & : \operatorname{CALC}\{1-16\}: \operatorname{MARK}\{1-10\}: \text { SET } \\ & \text { STAR }^{* 7} \end{aligned}$ |  |
|  |  |  | Ending value for the sweep range | MARKSTOP*8 | :CALC $\{1-16\}:$ MARK $\{1-10\}:$ SET STOP ${ }^{* 7}$ |  |
|  |  |  | Center value of the sweep range | MARKCENT** | $\begin{aligned} & : \operatorname{CALC}\{1-16\}: \text { MARK }\{1-10\}: \text { SET } \\ & \text { CENT }^{* 7} \end{aligned}$ |  |
|  |  |  | Span value of the sweep range | MARKSPAN*8 | Not available |  |
|  |  |  | Reference value | MARKREF*8 | $\begin{aligned} & \text { :CALC }\{1-16\}: M A R K\{1-10\}: \text { SET } \\ & \text { RLEV }^{* 7} \end{aligned}$ |  |
|  |  |  | CW frequency value | MARKCW*8 | Not available |  |
|  | Reading the marker value of hte active marker |  |  | OUTPMARK** | $\begin{aligned} & : \operatorname{CALC}\{1-16\}: \operatorname{MARK}\{1-10\}: \mathrm{X} ?^{* 7} \\ & \text { (stimulus value) } \\ & : \operatorname{CALC}\{1-16\}: \operatorname{MARK}\{1-10\}: \mathrm{Y}^{* 7} \\ & \text { (stimulus value) } \\ & \text { allows you to read the marker value of } \\ & \text { any marker. } \end{aligned}$ | The retrurn value from 8753ES includes the both of stimulus value and response value |
|  | Specify the electrical length so that the group delay becomes zero at the position of the active marker. |  |  | MARKDELA ${ }^{* 8}$ | $\begin{aligned} & : \operatorname{CALC}\{1-16\}: M A R K\{1-10\}: S E T \\ & \text { DEL }^{* 7} \end{aligned}$ |  |
|  | Marker search | Turning off the search function |  | SEAOFF*8 | Not available | The E5070B/E5071B requires you to send two commands, one for designating the search type and the other for executing the search. |
|  |  | Maximum |  | MARKMAXI ${ }^{* 8}$ | :CALC $\{1-16\}$ :MARK $\{1-10\}$ :FUNC:T |  |
|  |  |  |  | SEAMAX ${ }^{*}$ | $\begin{aligned} & \text { YPE MAX }{ }^{* T} \\ & \left.: \text { CALC }\{1-16\}: M A R K ~_{\text {P }} 1-10\right\}: \text { FUNC:E } \\ & \text { XEC }^{* 7} \end{aligned}$ |  |
|  |  | Minimum |  | MARKMINI*8 | :CALC $\{1-16\}:$ MARK $\{1-10\}:$ FUNC:T |  |
|  |  |  |  | SEAMIN* ${ }^{*}$ | $\begin{aligned} & \text { YPE MIN }{ }^{* 7} \\ & \left.: \text { CALC }^{2} 1-16\right\}: \text { MARK }\{1-10\}: \text { FUNC:E } \\ & \text { XEC }^{* 7} \end{aligned}$ |  |
|  |  | Target search | Left side | SEAL * ${ }^{\text {\% }}$ | $\begin{aligned} & : \operatorname{CALC}\{1-16\}: \text { MARK }\{1-10\}: \text { FUNC:T } \\ & \text { YPE LTAR }{ }^{* 7} \\ & \left.: \text { CALC }^{2} 1-16\right\}: \text { MARK }\{1-10\}: \text { FUNC:E } \\ & \text { XEC }^{* 7} \end{aligned}$ |  |
|  |  |  | Right side | SEAR *8 | $\begin{aligned} & \text { :CALC }\{1-16\}: \text { MARK }\{1-10\}: \text { FUNC:T } \\ & \text { YPE RTAR }{ }^{* 7} \\ & \left.: \text { CALC }^{2} 1-16\right\}: \text { MARK }\{1-10\}: \text { FUNC:E } \\ & \text { XEC }^{* 7} \end{aligned}$ |  |
|  |  |  | Specifying the search value | SEATARG** | :CALC $\{1-16\}$ :MARK $\{1-10\}:$ FUNC:T $\mathrm{ARG}^{* 7}$ |  |
|  |  | Bandwid th search | On/Off | WIDT* ${ }^{*}$ | :CALC $\{1-16\}$ :MARK: BWID $^{* 7}$ |  |
|  |  |  | Specifying parameters | WIDV*8 | $\begin{aligned} & \text { :CALC }\{1-16\}: M A R K\{1-10\}: \text { BWID:T } \\ & \text { HRU }^{* 7} \end{aligned}$ |  |
|  |  | Turning the tracking On/Off |  | TRACK*8 | $\begin{aligned} & \text { CALC }\{1-16\}: \text { MARK }\{1-10\}: \text { FUNC:T } \\ & \text { RAC }^{* 7} \end{aligned}$ |  |
|  | Statistics analysis |  | On/Off | MEASTAT** | :CALC $\{1-16\}: \mathrm{MST}^{* 3}$ |  |
|  |  |  | Reading the results | OUTPMSTA* ${ }^{*}$ | :CALC $\{1-16\}: \mathrm{MST}: D A T A ? * 3$ |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Device test | Limit test | Turning the limit test On/Off <br> Turning the limit line display <br> On/Off |  |  | LIMITEST** | :CALC $\{1-16\}:$ LIM $^{*} 3$ |  |
|  |  |  |  |  | LIMILINE*1 | :CALC 1 1-16\}:LIM:DISP*3 |  |
|  |  | Limit <br> Editing the test list | Start of editing |  | EDITLIML | :CALC $\{1-16\}:$ LIM:DATA ${ }^{* 3}$ is used to set up the limit test table. |  |
|  |  |  | End of editing |  | EDITDONE |  |  |
|  |  |  | Deleting the entire list |  | CLEL | :CALC $\{1-16\}$ :LIM:DATA 0 * ${ }^{\text {a }}$ |  |
|  |  |  |  |  | CLEAL |  |  |
|  |  |  | Setting the marker value at the offset along the Y-axis |  | LIMIMAOF | :CALC $\{1-16\}:$ LIM:DATA ${ }^{* 3}$ is used to set up the limit test table. |  |
|  |  |  | Editing segments | Selection | SEDI |  |  |
|  |  |  |  | Addition | SADD |  |  |
|  |  |  |  | Deletion | SDEL |  |  |
|  |  |  |  | End | SDON |  |  |
|  |  |  |  | Boundary value | LIMS |  |  |
|  |  |  |  | Upper limit value | LIMU |  |  |
|  |  |  |  | Lower limit value | LIML |  |  |
|  |  |  |  | Delta value | LIMD |  |  |
|  |  |  |  | Center valuer | LIMM |  |  |
|  |  |  |  | Sloping line | LIMTSL |  |  |
|  |  |  |  | Flat line | LIMTFL |  |  |
|  |  |  |  | Single point | LIMTSP |  |  |
|  |  |  |  | Setting the boundary value at the active marker's response value | MARKSTIM |  |  |
|  |  |  |  | Setting the center value at the active marker's response value | MARKMIDD |  |  |
|  |  | Specifyi ng the offset | Along the X -axis |  | LIMISTIO | Not available | The E5070B/E5071B does not allow the offset to be specified. |
|  |  |  | Along the Y-axis |  | LIMIAMPO |  |  |
|  |  | Turning the function On/Off that records the maximum and minimum for each segment |  |  | MINMAX | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)


Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Device test (cont'd.) | $\begin{aligned} & \hline \text { Ripple } \\ & \text { test } \\ & \text { (cont'd.) } \end{aligned}$ | $\begin{array}{\|l} \hline \text { Ripple } \\ \text { limit } \\ \text { editing } \\ \text { (cont'd.) } \end{array}$ | $\begin{aligned} & \text { Editing the } \\ & \text { band } \end{aligned}$ | Selection | SEDI | Not available | The E5070B/E5071B does not have the ripple test function. |
|  |  |  |  | Addition | SADD |  |  |
|  |  |  |  | Deletion | SDEL |  |  |
|  |  |  |  | End | SDON |  |  |
|  |  |  |  | Upper limit value | RLIMM |  |  |
|  |  |  |  | Start value | RLIMSTR |  |  |
|  |  |  |  | Stop value | RLIMSTP |  |  |
|  |  |  | Displaying the ripple value | Absolute value | RLIMVALABS |  |  |
|  |  |  |  | Margin | RLIMVALMAR |  |  |
|  |  |  |  | Off | RLIMVALOFF |  |  |
|  |  | Reading the results | Information on failed points |  | OUTPFARPLPT |  |  |
|  |  |  | Magnitude of ripples in all valid bands |  | $\begin{aligned} & \text { OUTPRPLBND } \\ & \text { ALL } \end{aligned}$ |  |  |
|  |  |  | Designated band results |  | $\begin{aligned} & \text { OUTPRPLBND } \\ & \text { PF } \end{aligned}$ |  |  |
|  |  |  | Magnitude of designated bands ripples |  | $\begin{aligned} & \text { OUTPRPLBND } \\ & \text { VAL } \end{aligned}$ |  |  |
|  | Bandwid th test | Turning the bandwidth testOn/Off |  |  | BWLIMTEST* ${ }^{*}$ | Not available | The E5070B/E5071B allows the bandwidth to be displayed but not to be tested. |
|  |  | Turning the bandwidth display On/Off |  |  | BWLIMDISP*1 | Not available |  |
|  |  | Specifying the bandwidth threshold value (attenuation from the peak) |  |  | BWLIMDB*1 | Not available |  |
|  |  | Specifying the upper limit value for the test |  |  | BWLIMMAX ${ }^{*}$ | Not available |  |
|  |  | Specifying the lower limit value for the test |  |  | BWLIMMIN ${ }^{* 1}$ | Not available |  |
|  |  | Reading the results | Bandwidth, center value, Q value |  | OUTPMWID** | Not available |  |
|  |  |  | Bandwidth, center value, Q value, loss |  | OUTPMWIL ${ }^{* 1}$ | :CALC $\{1-16\}$ :MARK $\{1-10\}$ :BWID:D ATA? ${ }^{* 7}$ |  |
|  |  |  | Reading the bandwidth value |  | BWLIMVAL ${ }^{* 1}$ | :CALC $\{1-16\}:$ MARK $\{1-10\}:$ BWID:D ATA?*7 |  |
|  |  |  | Reading the results (pass/fail) |  | BWLIMSTAT ${ }^{*}$ | Not available |  |
| Status report | Clearing the status byte register, event status register, and valid register. |  |  |  | CLES | *CLS |  |
|  |  |  |  |  | CLS |  |  |
|  | Reading the status byte register |  |  |  | OUTPSTAT | *STB? |  |
|  |  |  |  |  | STB? | *STB? |  |
|  | Setting up the service request valid register |  |  |  | SRE | *SRE |  |
|  | Reading the event status register |  |  |  | ESR? | *ESR? |  |
|  | Setting up the event status valid register |  |  |  | ESE | *ESE |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)


Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| Save/Recall (cont'd.) | Selecting media for saving files | Internal memory |  | INTM | Not available | The E5070B/E5071B allows the media to be selected by designating the drive name at the time the file is saved. A file can be saved on either the internal hard disk drive or to the floppy disk drive. |
|  |  | Floppy disk drive |  | INTD | Not available |  |
|  |  | External disk drive |  | EXTD | Not available |  |
|  |  | Designating the external disk number |  | DISCUNIT | Not available |  |
|  |  | Partition on the external disk to be designated |  | DISCVOLU | Not available |  |
|  | Designating the storage format DOS |  |  | FORMATDOS | Not available | The E5070B/E5071B is compatible with the DOS format only. |
|  |  |  | LIF | FORMATLIF |  |  |
|  | Initializing the storage medium | Floppy disk |  | INID | Not available | On the E5070B/E5071B, the starage media can be initialized using a mouse. |
|  |  | Specifying the size of the LIF directory |  | DIRS | Not available | The E5070B/E5071B is compatible with the DOS format only. |
|  |  | External disk |  | INIE | Not available |  |
|  | Save/Recall register | Giving a title |  | TITR | Not available | The E5070B/E5071B stores all data on the hard disk or to a floppy disk. |
|  |  |  |  | TITREG | Not available |  |
|  |  | Clear | Clearing the designated number | CLEA | Not available |  |
|  |  |  |  | CLEARREG | Not available |  |
|  |  |  | All clear | CLEARALL | Not available |  |
|  | File manipulation | Deletion |  | PURG | :MMEM:DEL |  |
|  | Reading the file title from the disk |  |  | REFT | Not available |  |
| Test sequence | Creating/Revising a new sequence |  |  | NEWSEQ | Not available | The E5070B/E5071B does not have the test sequence function. Macros are created using VBA. |
|  | Selecting a test sequence |  |  | Q | :PROG:NAME <br> (Selecting a VBA program) |  |
|  |  |  |  | SEQ |  |  |
|  | Reading a test sequence |  |  | OUTPSEQ | Not available |  |
|  | Executing the selected sequence |  |  | DOSEQ | :PROG:STAT RUN <br> (Executing the selected VBA program) |  |
|  | Stopping the selected sequencer |  |  | PTOS | :PROG:STAT STOP <br> (Stopping the selected VBA program) |  |
|  | Resuming a stopped test sequence |  |  | CONS | Not available |  |
|  | Executing another sequence from the test sequence |  |  | GOSUB | Not available |  |
|  | Naming the test sequence | Name |  | TITSEQ | Not available |  |
|  |  | Displaying the softkey menu for setup |  | TITSQ | Not available |  |
|  | Specifying waiting time in the test sequence |  |  | SEQWAIT | Not available |  |
|  | Displaying the softkey menu while the test sequence is in progress. |  |  | SHOM | Not available |  |
|  | Specifying the status bit in the event status register |  |  | ASSS | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8753ES | E5070B/E5071B |  |
| Test sequence (cont'd.) | GPIODesignat <br> input por <br> branchin | ing the bit number of the to be used for | PARAIN | Not available | The E5070B/E5071B does not have a test sequence function. Macros are created using VBA. |
|  | GPIO | e designated bit | SETBIT | Not available |  |
|  |  | the designated bit | CLEABIT | Not available |  |
|  |  |  | PARAOUT | Not available |  |
|  | TTL output | gh after ending sweep | TTLHPULS | Not available |  |
|  |  | w after ending sweep | TTLLPULS | Not available |  |
|  |  | et to High | TTLOH | Not available |  |
|  | Always s | et to Low | TTLOL | Not available |  |
|  | Loop counter | Setting values | LOOC | Not available |  |
|  |  | Subtract one. | DECRLOOC | Not available |  |
|  |  | Add one. | INCRLOOC | Not available |  |
|  | Branchin <br> g | Executes the sequence when the designated GPIO bit is set to High. | IFBIHIGH | Not available |  |
|  |  | Executes the sequence when the designated GPIO bit is set to Low. | IFBILOW | Not available |  |
|  |  | Executes the sequence when the loop counter is at zero. | IFLCEQZE | Not available |  |
|  |  | Executes the sequence when the loop counter is not at zero. | IFLCNEZE | Not available |  |
|  |  | Executes the sequence when the limit test fails. | IFLTFAIL | Not available |  |
|  |  | Limit test passes, and the sequence executes. | IFLTPASS | Not available |  |
|  | Specifying the bit for selecting the attenuator in the test set. | Forward | TSTIOFWD | Not available |  |
|  |  | Reverse | TSTIOREV | Not available |  |
|  | Clearing the designated sequence from the register |  | CLEASEQ | Not available |  |
|  | Ending editing of the test sequence |  | DONM | Not available |  |
|  | Copying the test sequence |  | DUPLSEQ | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| System | Reset |  |  | PRES | :SYST:PRES | After execution, the *RST on the E5070B/E5071B set the trigger state to Hold. |
|  |  |  |  | RST | *RST |  |
|  | Executes a self-test and returns the results. |  |  | TST? | Not available |  |
|  | Internal clock |  | Setting the date | SETDATE | :SYST:DATE |  |
|  |  |  | Reading the date | READDATE | :SYST:DATE? |  |
|  |  |  | Setting the time | SETTIME | :SYST:TIME |  |
|  |  |  | Reading the time | READTIME | :SYST:TIME? |  |
|  | Setting up the beep sound |  | On/Off operations at the time an action is completed | BEEPDONE | :SYST:BEEP:COMP:STAT |  |
|  |  |  | On/Off at the time the limit test fails | BEEPFAIL | Not available | On the E5070B/E5071B, the beep sound for a failed limit test is set up based on the beeper setup for the warning sound. |
|  |  |  | On/Off at the time a warning occurs | BEEPWARN | :SYST:BEEP:WARN:STAT |  |
|  |  |  | Sounds the beep sound. | EMIB | :SYST:BEEP:COMP:IMM (Beep sound when an action completes) or :SYST:BEEP:WARN:IMM (Beep sound when a warning occurs) |  |
|  | Selecting the measurement mode |  | Standard network analyzer | INSMNETA | Not available | The E5070B/E5071B is always considered a standard network analyzer. |
|  |  |  | External source (automatic) | INSMEXSA |  |  |
|  |  |  | External source (manual) | INSMEXSM |  |  |
|  |  |  | Tuned receiver | INSMTUNR |  |  |
| Printer/Plotte r output | Printing | Plotter |  | PLOT | Not available |  |
|  |  | Printer | LCD screen | PRINALL | :HCOP |  |
|  |  |  | Test sequence | PRINSEQ | Not available | The E5070B/E5071B does not have the test sequence function. |
|  |  |  | List display | PRINTALL | Not available | The E5070B/E5071B does not have the list display function. |
|  | Output the LCD screen to the printer by using a PCL raster dump. |  |  | OUTPPRIN | :HCOP |  |
|  | The LCD screen in the HP-GL is output from the GPIB port. |  |  | OUTPPLOT | Not available | The E5070B/E5071B does not allow output from the GPIB. |
|  | Setting the line type |  |  | LINTDATA | Not available | The E5070B/E5071B always gives the data trace in a solid line. |
|  |  |  | Memory trace | LINTMEMO |  |  |
|  | Setting up the printer | Return to the initial state |  | DEFLPRINT | Not available | On the E5070B/E5071B, the printer setup is executed by using the front panel. |
|  |  | Setting | Color | PRIC | Not available |  |
|  |  | up for printing | Monochrome | PRIS |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B 8753ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8753ES | E5070B/E5071B |  |
| Printer/Plotte <br> r output <br> (cont'd.) | Setting up the printer (cont'd.) | Color | Trace data | PCOLDATA | Not available | On the E5070B/E5071B, color setup is allowed only for turning highlighting of the entire screen On/Off. |
|  |  |  | Graticule lines | PCOLGRAT |  |  |
|  |  |  | Memory trace | PCOLMEMO |  |  |
|  |  |  | Reference line | PCOLREFL |  |  |
|  |  |  | Text | PCOLTEXT |  |  |
|  |  |  | Warning message | PCOLWARN |  |  |
|  |  | Setting the printer port | GPIB | PRNPRTHPIB | Not available | On the E5070B/E5071B, the printer setup is executed by using the front panel. |
|  |  |  | Parallel port | PRNPRTPARA |  |  |
|  |  |  | Serial port | PRNPRTSERI |  |  |
|  |  | Settingtheprintertype | HP DeskJet 540/850C | PRNTYP540 | Not available | On the E5070B/E5071B, the printer setup is executed by using the front panel. |
|  |  |  | HP DeskJet | PRNTYPDJ |  |  |
|  |  |  | Epson ESC/P2 | PRNTYPEP |  |  |
|  |  |  | HP LaserJet | PRNTYPLJ |  |  |
|  |  |  | HP PaintJet | PRNTYPPJ |  |  |
|  |  |  | HP ThinkJet | PRNTYPTJ |  |  |
|  |  | Handshake mode |  | PRNHNDSHK | Not available |  |
|  |  | Turning the automatic feedOn/Off |  | PRNTRAUTF | Not available |  |
|  |  | Serial port baud rate |  | PRNTRBAUD | Not available |  |
|  |  | Sending a form feed |  | PRNTRFORF | Not available |  |
|  | Plotter setup | Returning <br> Setting the print scope | $g$ to the initial state | DFLT | Not available | The E5070B/E5071B does not support plotters. |
|  |  |  | Entire sheet | FULP |  |  |
|  |  |  | Lower-left 1/4 of a sheet | LEFL |  |  |
|  |  |  | Upper-left 1/4 of a sheet | LEFU |  |  |
|  |  |  | Lower-right $1 / 4$ of a sheet | RIGL |  |  |
|  |  |  | Upper-right $1 / 4$ of a sheet | RIGU |  |  |
|  |  |  | Trace data | PDATA |  |  |
|  |  |  | Graticule lines | PGRAT |  |  |
|  |  |  | Memory trace | PMEM |  |  |
|  |  |  | Marker | PMKR |  |  |
|  |  |  | Softkey | PSOFT |  |  |
|  |  |  | Text | PTEXT |  |  |
|  |  | Pen number | Trace data | PENNDATA |  |  |
|  |  |  | Graticule lines | PENNGRAT |  |  |
|  |  |  | Memory trace | PENNMARK |  |  |
|  |  |  | Marker | PENNMEMO |  |  |
|  |  |  | Text | PENNTEXT |  |  |
|  |  | Pen speed | High speed | PLOSSLOW |  |  |
|  |  |  | Low speed | PLOSFAST |  |  |
|  |  | Setting up the scale | FULL | SCAPFULL |  |  |
|  |  |  | GRAT | SCAPGRAT |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)


| Function | Item to be specified/executed |  |  |  | Command (For | footnotes, see page 116.) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Others (cont'd.) | Mixer measure ment | Turning the frequency offset mode On/Off |  |  | FREQOFFS | Not available | The E5070B/E5071B does not have the mixer measuring function. |
|  |  | Selecting the down conversion. |  |  | DCONV |  |  |
|  |  | Selecting the up conversion. |  |  | UCONV |  |  |
|  |  | Reading the frequency of the external RF signal source. |  |  | OUTPRFFR |  |  |
|  |  | Specifyi <br> ng LO | Turning control On/Off |  | LOCONT |  |  |
|  |  |  | Frequency |  | LOFREQ |  |  |
|  |  |  | Setting the frequency in sweep mode |  | LOFSWE |  |  |
|  |  |  | Starting frequency |  | LOFSTAR |  |  |
|  |  |  | Stop frequency |  | LOFSTOP |  |  |
|  |  |  | Power |  | LOPOWER |  |  |
|  |  |  | Setting the power in sweep mode |  | LOPSTAR |  |  |
|  |  |  | Start power |  | LOPSTOP |  |  |
|  |  |  | Stop power |  | LOPSWE |  |  |
|  |  | Setting the signal source | RF > LO |  | RFGTLO |  |  |
|  |  |  | RF < LO |  | RFLTLO |  |  |
|  |  | Setting | Setup scree |  | VIEMOFF |  |  |
|  |  | up the display | Measureme | ent screen | VIEMON |  |  |
|  |  | LO frequency is used in the offset mode. |  |  | VOFF |  |  |
|  | Harmonics measurement mode |  | Turning off the measurement mode. |  | HARMOFF | Not available | The E5070B/E5071B does not have the harmonics measurement mode. |
|  |  |  | 2nd harmonics measurement |  | HARMSEC |  |  |
|  |  |  | 3rd harmonics measurement |  | HARMTHIR |  |  |
|  | Keymanipulationrelatedcommands | Performing the same processing as with the front panel key designated. |  |  | KEY | Not available |  |
|  |  | Performs the same processing as with the $[\uparrow]$ key on the front panel. |  |  | UP | Not available |  |
|  |  | Performs the same processing as with the $[\downarrow]$ key on the front panel. |  |  | DOWN | Not available |  |
|  |  | Returns the code of the last key manipulated on the front panel. |  |  | KOR? | Not available |  |
|  |  |  |  |  | OUTPKEY | Not available |  |
|  |  | Displaying the softkey menu corresponding to the front panel key. |  | [Avg] | MENUAVG | Not available |  |
|  |  |  |  | [Cal] | MENUCAL | Not available |  |
|  |  |  |  | [Copy] | MENUCOPY | Not available |  |
|  |  |  |  | [Display] | MENUDISP | Not available |  |
|  |  |  |  | [Format] | MENUFORM | Not available |  |
|  |  |  |  | [Marker] | MENUMARK | Not available |  |
|  |  |  |  | [Meas] | MENUMEAS | Not available |  |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Correspondence (by function)

| Function | Item to be specified/executed |  |  |  | Command (For footnotes, see page 116.) |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 8753ES | E5070B/E5071B |  |
| Others (cont'd.) | Keymanipulationrelatedcommands(cont'd.) | Displaying the softkey menu corresponding to the front panel key. (cont'd.) |  | [Marker Fctn] | MENUMRKF | Not available |  |
|  |  |  |  | [Power] | MENUPOWE | Not available |  |
|  |  |  |  | [Save/Recal 1] | MENURECA | Not available |  |
|  |  |  |  | [Save/Recal 1] | MENUSAVE | Not available |  |
|  |  |  |  | [Scale Ref] | MENUSCAL | Not available |  |
|  |  |  |  | [Seq] | MENUSEQU | Not available |  |
|  |  |  |  | [Marker <br> Search] | MENUSRCH | Not available |  |
|  |  |  |  | [Sweep Setup] | MENUSTIM | Not available |  |
|  |  |  |  | [Sweep Setup] | MENUSWEE | Not available |  |
|  |  |  |  | [System] | MENUSYST | Not available |  |
|  |  | Performing the same processing as with the designated softkey. |  |  | SOFT\{1-8\} | Not available |  |
|  |  | Editing softkey labels |  |  | WRSK | Not available |  |
|  | GPIB | Turning the debug mode On/Off |  |  | DEBU | Not available |  |
|  |  | Setting to talker/listener mode |  |  | TALKLIST | Not available |  |
|  |  | Sending the title character string | Peripherals |  | TITTPERI | Not available |  |
|  |  |  | Power mete |  | TITTPMTR |  |  |
|  |  |  | Printer |  | TITTPRIN |  |  |
|  |  | pass control |  |  | USEPASC | Not available |  |
|  |  | Setting the GPIB address | Controller |  | ADDRCONT | Not available | The E5070B/E5071B does not allow these GPIB addresses to be specified. |
|  |  |  |  |  | PCB |  |  |
|  |  |  | External disk drive |  | ADDRDISC | Not available |  |
|  |  |  | LO source |  | ADDRLSRC |  |  |
|  |  |  | Peripheral |  | ADDRPERI |  |  |
|  |  |  | Plotter |  | ADDRPLOT |  |  |
|  |  |  | Printer |  | ADDRPRIN |  |  |
|  |  |  | Power meter |  | ADDRPOWM | :SYST:COMM:GPIB:PMET:ADDR |  |
|  | Specifying uses of the parallel port |  | GPIO use |  | PARALGPIO | Not available | The E5070B/E5071B uses the GPIO for the printer. |
|  |  |  | Printer use |  | PARALCPY |  |  |
|  | Service mode |  | ALC control |  | ALC | Not available |  |
|  |  |  | Setting the analog bus On/Off |  | ANAB | Not available |  |

*1. Effective for the active channel (8753ES)
*2. Effective for channels and traces designated in the command. (E5070B/E5071B)
*3.Effective for the active trace designated in the command (E5070B/E5071B)
*4.Effective both for the main and auxiliary channels. (8753ES)
*5.Effective for the channels designated in the command. (E5070B/E5071B)
*6. Effective for all channels (8753ES)
*7. Effective command for the marker number, designated within that command, on the active trace in the channel having the channel number also designated in that command. (E5070B/E5071B)
*8. Effective command for the active marker (8753ES)

## 8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| [ A ] |  |  |
| AB | Select A/B measurement and display the traces. | Not available (A/B measurement not available.) |
| ADAP1 | Set up the electrical delay in the adapter removal calibration. | Not available |
| ADDRCONT | Specify the controller GPIB address. | Not available |
| ADDRDISC | Specify the GPIB address of the external disk drive. | Not available |
| ADDRLSRC | Specify the GPIB address of the LO source. | Not available |
| ADDRPERI | Specify the GPIB addresses of peripherals. | Not available |
| ADDRPLOT | Specify the GPIB address of the plotter. | Not available |
| ADDRPOWM | Specify the GPIB address of the power meter. | :SYST:COMM:GPIB:PMET:ADDR |
| ADDRPRIN | Specify the GPIB address of the printer. | Not available (Not compatible with a GPIB printer.) |
| ADPTCOAX | Select the adapter-coaxial in the adapter removal calibration. | Not available |
| ADPTWAVE | Select the adapter-waveguide in the adapter removal calibration. | Not available |
| ALC | Control ALC (for service use). | Not available |
| ALTAB | Set to an alternate measurement mode. | Not available (The sweeping of traces on the same channel is performed in chop measurement mode, while traces between different channels is performed in alternate mode.) |
| ANAB | On/Off setting for the analog bus (for service use) | Not available |
| ANAI | Select the measurement of the signal input to the AUX Input and display the trace. | Not available (Measurement parameters are S-parameters only.) |
| AR | Select the A/R measurement and display the traces. | Not available (Measurement parameters are S-parameters only.) |
| ASEG | All segments are used during the list frequency sweep. | Not available (All segments are always used.) |
| ASSS | Specify the sequence bit of the event status register. | Not available |
| ATTP1 | Specify the value for the attenuator at port 1. | $\text { :SOUR\{1-16\}:POW:ATT }$ |
| ATTP2 | Specify the value for the attenuator at port 2 . | (Channels are used for setup.) |
| AUTO | Perform autoscale. | :DISP:WIND 1 1-16\}:TRAC $\{1-16\}$ :Y:AUTO |
| AUXC | Set channels 3 and 4 On/Off. | Using the command :CALC $\{1-16\}:$ PAR:COUN enables you to do the equivalent. |
| AVERFACT | Specify the averaging factor. | :SENS \{1-16\}:AVER:COUN |
| AVERO | Set the averaging On/Off. | :SENS 1 1-16\}:AVER |
| AVERREST | Restart the averaging. | :SENS 1 1-16\}:AVER:CLE |
| [ B ] |  |  |
| BACI | Specify the screen brightness. | Not available (On/Off setting for the backlight only allowed) |
| BANDPASS | Select the BANDPASS mode in the time-domain transformation. | :CALC 1 1-16\}:TRAN:TIME BPAS |
| BEEPDONE | Set the beep (n) sound at the end of an action On/Off. | :SYST:BEEP:COMP:STAT |
| BEEPFAIL | Set the beep ( n ) sound for the limit test FAIL On/Off. | Not available (Setting is the same as for the warning beep sound.) |
| BEEPWARN | Set the warning beep (n) sound On/Off. | :SYST:BEEP:WARN:STAT |
| BLAD | Set the display On/Off. | :SYST:BACK (Set the LCD backlight On/Off) <br> The On/Off relation on the 8753ES is opposite that on the E5070B/E5071B. |
| BR | Select the B/R measurement and display the traces. | Not available |

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| BWLIMDB | Specify the value indicating the position of the bandwidth <br> (attenuation from the peak) in the bandwidth test. | Not available (Can perform the bandwidth search <br> but does not have the test function.) |
| BWLIMDISP | Set the bandwidth value display in the bandwidth test On/Off. |  |


| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| CALK24MM | Select 2.4 mm Calibration Kit (85056A/D) as the default calibration kit. | :SENS 1 1-16\}:CORR:COLL:CKIT |
| CALK292MM | Select 2.92 mm Calibration Kit as the default calibration kit. |  |
| CALK292S | Select 2.92 mm Calibration Kit (85056K) as the default calibration kit. |  |
| CALK35MC | Select 3.5 mm Calibration Kit (85033C) as the default calibration kit. |  |
| CALK35MD | Select 3.5 mm Calibration Kit (85033D) as the default calibration kit. |  |
| CALK716 | Select 7-16 Calibration Kit (85038) as the default calibration kit. |  |
| CALK7MM | Select 7 mm Calibration Kit (85031B) as the default calibration kit. |  |
| CALKN50 | Select N-type 50 Calibration Kit (85032B/E) as the default calibration kit. |  |
| CALKN75 | Select N-type 75 Calibration Kit (85036B/E) as the default calibration kit. |  |
| CALKTRLK | Select TRL 3.5 mm Calibration Kit (85052C) as the default calibration kit. |  |
| CALKUSED | Select a user-defined calibration kit as the default calibration kit. |  |
| CALN | Set the error correction to Off. | :SENS $\{1-16\}$ :CORR:STAT OFF |
| CALSPORT1 | Call the data on port 1 for adapter removal calibration. | Not available |
| CALSPORT2 | Call the data on port 2 for adapter removal calibration. |  |
| CALZLINE | Set the characteristic impedance for TRL*/LRM* 2-port calibration at the impedance value of the standard. | Not available (The E5070B/E5071B supports the TRL calibration function using VBA.) |
| CALZSYST | Set the characteristic impedance for TRL*/LRM* 2-port calibration at the characteristic impedance value of the measurement system. |  |
| CBRI | Specify the display color brightness for the items selected. | Not available (Color setup is allowed only for turning highlighting of the entire screen On/Off.) |
| CENT | Specify the center value of the sweep range. | :SENS \{1-16\}:FREQ:CENT <br> (Cannot be used for segment editing.) :SOUR\{1-16\}:POW:CENT |
| CHAN1 | Specify channel 1 as the active channel. | :DISP:WIND $\{1-16\}:$ ACT (Specifying the active channel) or :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}$ :SEL (Specifying the active channel) <br> For an outline of channels and traces, refer to the "Users' Guide." |
| CHAN2 | Specify channel 2 as the active channel. |  |
| CHAN3 | Specify channel 3 as the active channel. |  |
| CHAN4 | Specify channel 4 as the active channel. |  |
| CHOPAB | Set the system to chop measurement mode. | Not available (Traces on the same channel are measured using the same method as the chop sweep. When traces belong to different channels, they are measured using the same method as the alternate sweep.) |
| CLAD | Complete the class designation in defining the calibration kits. | Not available (Can be ignored in the case of replacement.) |
| CLASS11A | Measure S11A. | :SENS 1 1-16\}:CORR:COLL:OPEN |
| CLASS11B | Measure S11B. | :SENS\{1-16\}:CORR:COLL:SHOR |
| CLASS11C | Measure S11C. | :SENS 1 1-16\}:CORR:COLL:LOAD |
| CLASS22A | Measure S22A. | :SENS 1 1-16\}:CORR:COLL:OPEN |
| CLASS22B | Measure S22B. | :SENS\{1-16\}:CORR:COLL:SHOR |
| CLASS22C | Measure S22C. | :SENS 1 1-16\}:CORR:COLL:LOAD |
| CLEA | Clear the register for saving/recalling the designated number. | Not available |
| CLEABIT | Clear the designated GPIO bit. | Not available (No GPIO interface) |

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { 8753ES } & \text { Function overview } & \text { E5070B/E5071B } \\
\hline \text { CLEAL } & \text { Clear the entire list. } & \begin{array}{l}\text { Segment Sweep Table } \\
\text { SENS }\{1-16\}: S E G M: D A T A ~ m a k e s ~ o v e r w r i t e ~\end{array}
$$ <br>
Segment Sweep Table <br>
Limit Test Table <br>

CALC:LIM:DATA 0\end{array}\right\}\)| Calibration Facotor (Power Sensor A) |
| :--- |
| :SOUR:POW:PORT:CORR:COLL:TABL:ASEN: |
| DATA 0 |
|  |


| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| CONT | Set the trigger mode to continuous mode. | :INIT $\{1-16\}$ :CONT ON |
| CONV1DS | Transform the S-parameter measurement data into inverted S-parameters. | :CALC $\{1-16\}:$ CONV:FUNC INV :CALC $\{1-16\}:$ CONV ON |
| CONVOFF | Set the S-parameter transformation function to Off. | :CALC\{1-16\}:CONV OFF |
| CONVYREF | Transform the S-parameter measurement data into impedances (refrections). | :CALC $\{1-16\}:$ CONV:FUNC YREF :CALC\{1-16\}:CONV ON |
| CONVYTRA | Transform the S-parameter measurement data into impedances (transmissions). | :CALC $\{1-16\}:$ CONV:FUNC YTR :CALC $\{1-16\}:$ CONV ON |
| CONVZREF | Transform the S-parameter measurement data into impedances (refrections). | :CALC $\{1-16\}:$ CONV:FUNC ZREF :CALC\{1-16\}:CONV ON |
| CONVZTRA | Transform the S-parameter measurement data into impedances (transmissions). | :CALC $\{1-16\}:$ CONV:FUNC ZTR :CALC $\{1-16\}$ :CONV ON |
| COPYFRFT | Copy a label from the file title. | Not available |
| COPYFRRT | Copy a label from the register title. | Not available |
| CORI | Set the error correction by interpolation of calibration coefficients to On/Off. | Not available (Always On) |
| CORR | Set the error correction On/Off. | :SENS 1 1-16\}:CORR:STAT |
| COUC | Set the sweep condition at Couple/Uncouple between channels. | The sweep condition is not coupled between channels. The sweep condition for traces on the same channel is coupled. |
| COUP | Set the power level at Couple/Uncouple between channels. | You can do the same thing in the channel and trace setup. |
| CSWI | Set the switch changeover in the test set to Continuous/Stop. | Not available |
| CWFREQ | Specify the signal source frequency for the power level sweep or CW TIME sweep. | :SENS 1 1-16\}:FREQ |
| CWTIME | Set the sweep type to CW TIME. | Not available (CW TIME sweep function not available.) |
| [ D ] |  |  |
| D1DIVD2 | Display on channel 2 the result of dividing the measurement on channel 2 by that on channel 1. | Not available |
| D2XUPCH2 | Places two graphs on the LCD screen: an upper one (for channels 1 and 2) and a lower one (for channels 3 and 4). | Not available |
| D2XUPCH3 | Places two graphs on the LCD screen: an upper one (for channels 1 and 3) and a lower one (for channels 2 and 4). | :DISP:SPL (Sets up the channel window layout.) and :DISP:WIND $\{1-16\}$ :SPL (Sets up the trace graph layout.) are combined to enable you to perform the equivalent. |
| D4XUPCH2 | Places four graphs on the LCD screen: one in the upper left (for channel 1), one in the upper right (for channel 2), one in the lower left (for channel 3), and one in the lower right (for channel 4). |  |
| D4XUPCH3 | Places four graphs on the LCD screen: one in the upper left (for channel 1), one in the upper right (for channel 3), one in the lower left (for channel 2), and one in the lower right (for channel 4). | Not available |
| DATI | Save the measurement data in memory. | :CALC 1 1-16\}:MATH:MEM |
| DCONV | Select Down Convert in the mixer measurement. | Not available (Mixer measurement function not available.) |
| DEBU | Set the GPIB debug mode On/Off. | Not available |
| DECRLOOC | Subtract one from the loop counter value. | Not available <br> (Test sequence function not available.) |
| DEFC | Return the color settings of all items to their initial states. | :DISP:COL\{1-2\}:REF |
| DEFLPRINT | Return the printer setup to its initial state. | Not available |
| DEFLTCPIO | Return the copy setup to its initial state. | Not available |
| DEFS | In defining calibration kits, start defining each standard. | Not available (You do not need to send the command for defining a standard.) |
| DELA | Set the display format to the group delay format. | :CALC 1 1-16\}:FORM GDEL |

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| DELO | Turn off the delta marker mode. | :CALC $\{1-16\}:$ MARK:REF OFF |
| DELR | Designate the delta marker as the designated marker. | Not available (Marker 10 is assigned as the delta <br> marker.) |
| DELRFIXM | Designate the delta marker as a fixed delta marker. | Not available (No functions for fixed markers are <br> available.) |
| DEMOAMPL | Display the AM modulated component only. | Not available <br> (Demodulation function not available.) |
| DEMOOFF | Turn off the demodulation function. | Not available (Plotters are not supported.) |
| DEMOPHAS | Display the phase-modulated component only. | Return the plotter setup to its initial state. |


| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| ECALAB? | Read the selected ECAL module. | Not available |
| ECALCONT | Resume the suspended ECAL operation. | Not available |
| ECALDONE | Read to see if the ECal operation has ended. | Not available |
| ECALERC | Perform ECal forward enhanced response calibration. | Not available (Performing the enhanced response <br> calibration is not allowed.) |
| ECALFREQS | Read the calibration frequency array store in the ECal module. | Not available |
| ECALFUL2 | Perform ECal full 2-port calibration. | :CALC $\{1-16\}:$ CORR:COLL:ECAL:SOLT2 |

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| EXTMDATA | Determine whether or not to save corrected data along with the device status. | :MMEM:STOR:STYP <br> (Selection of the contents to be saved (v) in the Instrument State file) |
| EXTMDATO | Save the data array selected only. | Not available (:MMEM:STOR:FDAT can be used to save the formatted memory array for the active trace on the active channel.) |
| EXTMFORM | Determine whether or not to save trace data along with the device status. | Not available |
| EXTMGRAP | Determine whether or not to save the LCD screen along with the device status. | Not available (Adding images on the LCD screen to the Instrument State file is not allowed.) |
| EXTMRAW | Determine whether or not to save raw data along with the device status. | Not available (Adding raw data is not allowed.) |
| EXTTOFF | Turn off the external trigger mode. | Not available (Automatically turns off if a setting other than external trigger is selected in :TRIG:SOUR.) |
| EXTTON | Set to the external trigger mode (per sweep). | :TRIG:SOUR EXT |
| EXTTHIGH | Set the external trigger line to High. | Not available (The external trigger line is set to |
| EXTTLOW | Set the external trigger line to Low. | Low |
| EXTTPOIN | Set to the external trigger mode (point by point). | Not available |
| [ F ] |  |  |
| FIXE | In defining the calibration kits, set the type of LOAD to fixed load. | Not available (The LOAD standard is treated as fixed LOAD) |
| FORM1 | Select the intra-device binary format for data transfers. | Not available (Selecting the intra-device binary format is not allowed.) |
| FORM2 | Select the IEEE 32-bit floating point format for data transfers. | :FORM:DATA REAL32 :FORM:BORD NORM |
| FORM3 | Select the IEEE 64-bit floating point format for data transfers. | :FORM:DATA REAL :FORM:BORD NORM |
| FORM4 | Select the ASCII format for data transfers. | :FORM:DATA ASC |
| FORM5 | Select the PC-DOS 32-bit floating point format for data transfers. | :FORM:DATA REAL32 :FORM:BORD SWAP |
| FORMATDOS | Select DOS as the storage format.Çí | Not available <br> (Not compatible with the LIF format) |
| FORMATLIF | Select LIF as the storage format. |  |
| FREO | Cause the frequency display on the LCD screen to disappear. | :DISP:ANN:FFREQ OFF <br> (Executing this command does not increase the coverage of the graph.) |
| FREQOFFS | Set the frequency offset mode in the mixer measurement On/Off. | Not available (Mixer measurement function not available.) |
| FRER | Set the trigger mode to continuous mode. | :INIT $\{1-16\}$ :CONT ON |
| FULP | Set up the system for full page plotting. | Not available (Plotters are not supported.) |
| FWDI | Start measuring the data from the forward isolation in 2-port calibration. | :SENS:CORR:COLL:ISOL <br> (Measures isolation bi-directionally.) |
| FWDM | Start measuring the data from the forward match in full 2-port calibration. | :SENS:CORR:COLL:THRU <br> (Measures both transmission and match.) |
| FWDT | Start measuring the data from the forward transmission in full 2-port calibration. |  |
| [ G ] |  |  |
| GATECENT | Specify the center value for the time-domain gate. | :CALC $\{1-16\}$ :FILT:TIME:CENT |
| GATEO | Set the time-domain gate On/Off. | :CALC 1 1-16\}:FILT:TIME:STAT |
| GATESPAN | Specify the span value of the time-domain gate. | :CALC $\{1-16\}$ :FILT:TIME:SPAN |
| GATESTAR | Specify the start value of the time-domain gate. | :CALC $\{1-16\}$ :FILT:TIME:STAR |
| GATESTOP | Specify the stop value of the time-domain gate. | :CALC $\{1-16\}$ :FILT:TIME:STOP |
| GATSMAXI | Set the shape of the time-domain gate to maximum. | :CALC $\{1-16\}$ :FILT:TIME:SHAP MAX |
| GATSMINI | Set the shape of the time-domain gate to minimum. | :CALC $\{1-16\}$ :FILT:TIME:SHAP MIN |


| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| GATSNORM | Set the shape of the time-domain gate to normal. | :CALC $\{1-16\}:$ FILT:TIME:SHAP NORM |
| GATSWIDE | Set the shape of the time-domain gate to wide. | :CALC $\{1-16\}:$ FILT:TIME:SHAP WIDE |
| GOSUB | Perform another sequence from the test sequence. | Not available <br> (Test sequence function not available.) |
| [ H ] | Set the harmonics measurement mode to Off. | Not available (Harmonics measurement mode not |
| available.) |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B
$8753 E S$ vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| INTD | Designate the floppy disk drive as the storage to be manipulated. | Not available (When the file is saved in drive A using the file save command:MMEM:SAVE, it is saved to the floppy disk drive.) |
| INTE | Specify the brightness of the LCD screen. | Not available (Only On/Off setting for the backlight is allowed.) |
| INTM | Designate the internal memory as the storage to be manipulated. | Not available (Designated by the file Read/Write command.) |
| ISOD | Complete the measurement of data from the isolation of full 2-port calibration. | Not available (Data measurement completion command not available.) |
| ISOL | Start measuring the data from the isolation of full 2-port calibration. | Not available (Data measurement completion command not available.) |
| ISOOP | Start measuring the data from the isolation of one-bus 2-port calibration. | Not available (Data measurement completion command not available.) |
| [ K ] |  |  |
| KEY | Performs the same processing as pressing the designated key on the front panel. | Not available (No command available equivalent to the front panel key manipulation in terms of processing.) |
| KITD | Complete the operation for defining calibration kits. | Not available (No command available for ending defining operations.) |
| KOR? | Read the information for the previous front panel manipulation. | Not available |
| [L] |  |  |

$\left.\begin{array}{|l|l|l|}\hline \text { 8753ES } & \text { Function overview } & \text { E5070B/E5071B } \\ \hline \text { LABEFWDM } & \text { Give an arbitrary name to the Forward Match calibration class. } & \text { Not available (Editing of calibration class labels is } \\ \text { not allowed.) }\end{array}\right\}$

Comparing Commands of the 8753ES and E5070B/E5071B
8753 ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)
$\left.\begin{array}{|l|l|l|}\hline \text { 8753ES } & \text { Function overview } & \text { E5070B/E5071B } \\ \hline \text { LIML } & \text { Specify the lowest value of the limit for the limit test. } & \text { Not available (:CALC }\{1 \text { 1-16\}:LIM:DATA is used to } \\ \text { perform all the limit table setup work.) }\end{array}\right\}$.

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| MANTRIG | Select the manual trigger mode (point by point). | Not available |
| MARK1 | Activate marker 1 and move it to the designated position. | :CALC $\{1-16\}$ :MARK $\{1-10\}$ (Marker On/Off) and :CALC $\{1-16\}$ :MARK $\{1-10\}$ :X (Marker stimulus value) are combined for execution. |
| MARK2 | Activate marker 2 and move it to the designated position. |  |
| MARK3 | Activate marker 3 and move it to the designated position. |  |
| MARK4 | Activate marker 4 and move it to the designated position. | :CALC $\{1-16\}$ :MARK $\{1-10\}$ (Marker ON/OFF) and :CALC $\{1-16\}$ :MARK $\{1-10\}$ :X (Marker stimulus value) are combined for execution. |
| MARK5 | Activate marker 5 and move it to the designated position. |  |
| MARKBUCK | Move the active marker to the designated point. | Not available (Specify the stimulus value when moving the marker.) |
| MARKCENT | Change the sweep center value to the stimulus value at the position of the active marker. | :CALC $\{1-16\}$ :MARK 1 1-10\}:SET CENT |
| MARKCONT | Select the mode in which the marker moves on the trace continuously. | :CALC 1 1-16\}:MARK 1 1-10\}:DISC OFF |
| MARKCOUP | Select the mode in which markers are coupled between channels. | :CALC $\{1-16\}$ :MARK:COUP ON (Coupled between traces on the same channel) |
| MARKCW | Change the CW frequency value to the frequency value at the position of the active marker. | Not available (CW TIME sweep function and power sweep function not available.) |
| MARKDELA | Specify the electrical length so that the group delay is zero at the position of the active marker. | :CALC 1 1-16\}:MARK 1 1-10\}:SET DEL |
| MARKDISC | Select the mode in which the marker moves from one point to another on the trace. | :CALC 1 1-16\}:MARK 1 1-10\}:DISC ON |
| MARKFAUV | Move the fixed marker to the position of the designated auxiliary measured value. | Not available (Fixed marker function not available.) |
| MARKFSTI | Move the fixed marker to the position of the fixed stimulus value. |  |
| MARKFVAL | Move the fixed marker to the position of the designated measured value. |  |
| MARKMAXI | Move the active marker to the position of the maximum value. | :CALC $\{1-16\}:$ MARK $\{1-10\}:$ FUNC:TYPE MAX :CALC $\{1-16\}$ :MARK $\{1-10\}$ :FUNC:EXEC <br> (Both commands must be sent.) |
| MARKMIDD | Set the center value of the limit in the delta limit test to the measured value at the position of the active marker. | Not available |
| MARKMINI | Move the active marker to the position of the minimum value. | :CALC $\{1-16\}$ :MARK $\{1-10\}:$ FUNC:TYPE MIN :CALC $\{1-16\}$ :MARK $\{1-10\}:$ FUNC:EXEC <br> (Both commands must be sent.) |
| MARKOFF | Set all markers and the marker function to Off. | Not available |
| MARKREF | Change the reference value to the measured value at the position of the active marker. | :CALC $\{1-16\}$ :MARK 1 1-10\}:SET RLEV |
| MARKSPAN | Change the span value of the sweep range to the stimulus value at the position of the active marker. | Not available (The stimulus value is not allowed to be set to the span value of the sweep range.) |
| MARKSTAR | Change the starting value of the sweep range to the stimulus value at the position of the active marker. | :CALC 1 1-16\}:MARK 1 1-10\}:SET STAR |
| MARKSTIM | Set the boundary value of the segment in the limit test to the stimulus value at the position of the active marker. | Not available |
| MARKSTOP | Change the ending value of the sweep range to the stimulus value at the position of the active marker. | :CALC 1 1-16\}:MARK 1 1-10\}:SET STOP |
| MARKUNCO | Select the mode in which the markers are not coupled between channels. | :CALC $\{1-16\}$ :MARK $\{1-10\}$ :COUP OFF (Turn off the coupling between traces on the channel.) |
| MARKZERO | Move the fixed marker to the position of the active marker. | Not available (Fixed marker function not available.) |
| MAXF | In defining calibration kits, specify the maximum frequency value. | Not available |
| MEASA | Select measurement A and display the traces. | Not available(The E5070B/E5071B does not have absolute value measuring function.) |
| MEASB | Select measurement B and display the traces. |  |
| MEASR | Select measurement R and display the traces. |  |

Comparing Commands of the 8753ES and E5070B/E5071B
$8753 E S$ vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| MEASTAT | Set the statistics analysis function On/Off. | :CALC 1 1-16\}:MST |
| MENUAVG | Display the softkey menu appearing when the [Avg] key is pressed. | Not available (No command is available that displays the softkey menu corresponding to each key.) |
| MENUCAL | Display the softkey menu appearing when the [Cal] key is pressed. |  |
| MENUCOPY | Display the softkey menu appearing when the [Copy] key is pressed. |  |
| MENUDISP | Display the softkey menu appearing when the [Display] key is pressed. |  |
| MENUFORM | Display the softkey menu appearing when the [Format] key is pressed. |  |
| MENUMARK | Display the softkey menu appearing when the [Marker] key is pressed. |  |
| MENUMEAS | Display the softkey menu appearing when the [Meas] key is pressed. |  |
| MENUMRKF | Display the softkey menu appearing when the [Marker Fctn] key is pressed. |  |
| MENUOFF | Set the softkey menu display to Off. | :DISP:SKEY OFF |
| MENUON | Set the softkey menu display to On. | :DISP:SKEY ON |
| MENUPOWE | Display the softkey menu appearing when the [Power] key is pressed. | Not available (No command is available that displays the softkey menu corresponding to each key.) |
| MENURECA | Display the softkey menu appearing when the [Save/Recall] key is pressed. |  |
| MENUSAVE | Display the softkey menu appearing when the [Save/Recall] key is pressed. |  |
| MENUSCAL | Display the softkey menu appearing when the [Scale Ref] key is pressed. |  |
| MENUSEQU | Display the softkey menu appearing when the [Seq] key is pressed. |  |
| MENUSRCH | Display the softkey menu appearing when the [Marker Search] key is pressed. |  |
| MENUSTIM | Display the softkey menu appearing when the [Sweep Setup] key is pressed. |  |
| MENUSWEE | Display the softkey menu appearing when the [Sweep Setup] key is pressed. |  |
| MENUSYST | Display the softkey menu appearing when the [System] key is pressed. |  |
| MINF | In defining calibration kits, specify the minimum frequency value. | Not available (Specifying the frequency band is not allowed.) |
| MINMAX | Set the function for recording the maximum and minimum for each segment in the limit test to On/Off. | Not available |
| MINU | Display the result of subtracting the memory trace from the data trace. | :DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}$ :STAT ON :DISP:WIND $\{1-16\}:$ TRAC $\{1-16\}$ :MEM OFF :CALC $\{1-16\}$ :MATH:FUNC SUBT <br> (All three commands must be sent.) |
| MODI1 | Start defining the calibration kits. | Not available |
| MODS | Calculate the new calibration set using the adapter removal function. | Not available |
| [ N ] |  |  |
| NEWSEQ | Create/Revise a test sequence. | Not available <br> (Test sequence function not available.) |
| NEXP | Go to next page while the list is displayed on the LCD screen. | Not available (List display function not available.) |
| NOOP | Wait for a while without doing anything. | Not available |
| NUMG | Perform the sweep operation the specified number of times. | Not available |
| NUMR | Specify the number of power meter readings. | $\begin{aligned} & \text { :SOUR }\{1-16\}: \text { POW:PORT }\{1-4\}: \text { CORR:COLL:A } \\ & \text { VER } \end{aligned}$ |


| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| [ O ] | Complete the offset LOAD measurement. | Not available (The LOAD standard is treated as <br> fixed LOAD.) |
| OFLD | In defining calibration kits, select the offset LOAD as the type of <br> LOAD. | Specify the offset value of the electrical delay. | | :SENS $\{1-16\}:$ CORR:COLL:CKIT:STAN $\{1-21\}:$ EL |
| :--- |
| OFLS |

## Comparing Commands of the 8753ES and E5070B/E5071B

$8753 E S$ vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)
$\left.\begin{array}{|l|l|l|}\hline \text { 8753ES } & \text { Function overview } & \text { E5070B/E5071B } \\ \hline \text { OUTPLIM\{1-4\} } & \text { Read the results of the limit test. } & \begin{array}{l}\text { :CALC }\{1-16\}: \text { LIM:FAIL? } \\ \text { (Read the result of the active trace on the specified } \\ \text { channel. The value read from the results is different } \\ \text { from that obtained by the 8753ES.) }\end{array} \\ \hline \text { OUTPLIMF } & \begin{array}{l}\text { Read the information on the failed points and the number of failed } \\ \text { points in the limit test. }\end{array} & \begin{array}{l}\text { Not available } \\ \text { (You can read the number of failed points by using } \\ \text { :CALC }\{1-16\}: \text { LIM:REP:POIN?.) }\end{array} \\ \hline \text { OUTPLIML } & \text { Read the results of the limit test for each point. } & \text { Not available } \\ \hline \text { OUTPLIMM } & \text { Read the results of the limit test at the position of the active marker. } & \text { Not available } \\ \hline \text { OUTPMARK } & \text { Read the value of the active marker. } & \begin{array}{l}\text { :CALC }\{1-16\}: \text { MARK }\{1-10\}: X ? \text { (Stimulus value) } \\ \text { :CALC }\{1-16\}: M A R K\{1-10\}: Y ? ~(R e s p o n s e ~ v a l u e) ~\end{array} \\ \text { Can be used to read the marker value, but you must } \\ \text { designate the channel and marker in the command. }\end{array}\right\}$

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| PDATA | Determine whether or not to output the data trace when plotting. | Not available (Plotters are not supported.) |
| PGRAT | Determine whether or not to output graticule lines when plotting. |  |
| PMEM | Determine whether or not to output the memory trace when plotting. |  |
| PMKR | Determine whether or not to output markers when plotting. |  |
| PSOFT | Determine whether or not to output softkeys when plotting. |  |
| PTEXT | Determine whether or not to output the text when plotting. |  |
| PARAIN $\{0-4\}$ | Specify the bit number of the GPIO input port to be used for branching in the test sequence. | Not available (Test sequence function not available.) |
| PARAOUT 0 -255\} | Specify the output from the GPIO output port for all bits at the same time. | Not available (GPIO output is not supported.) |
| PARALGPIO | Set up the parallel port for GPIO use. | Not available (Parallel port is intended for the printer.) |
| PARALCPY | Set up the parallel port for printer use. |  |
| PAUS | Insert a pause into the test sequence. | Not available (Test sequence function not available.) |
| PCB $\{0-30\}$ | Specify the GPIB address where control is returned. | Not available (Pass control function not available) |
| PCOLDATA $\{1-4\}$ | Specify the color for the data trace for printing. | Not available (Color setup is allowed only for turning highlighting of the entire screen On/Off.) |
| PCOLGRAT | Specify the color for graticule lines for printing. |  |
| PCOLMEMO $\{1-4\}$ | Specify the color for the memory trace for printing. |  |
| PCOLREFL | Specify the color for the reference line for printing. |  |
| PCOLTEXT | Specify the color for text for printing. |  |
| PCOLWARN | Specify the color for warning messages for printing. |  |
| PENNDATA $\{0-10\}$ | Specify the pen number for the data trace for plotting. | Not available (Plotters are not supported.) |
| PENNGRAT $\{0-10\}$ | Specify the pen number for the graticule lines for plotting. |  |
| $\begin{aligned} & \text { PENNMARK\{0-10 } \\ & \} \end{aligned}$ | Specify the pen number for the marker for plotting. |  |
| $\begin{aligned} & \text { PENNMEMO }\{0-10 \\ & \} \end{aligned}$ | Specify the pen number for the memory trace for plotting. |  |
| PENNTEXT $\{0-10\}$ | Specify the pen number for text for plotting. |  |
| PHAO $00-360\}$ | Specify the phase offset. | :CALC $\{1-16\}$ :CORR:OFFS:PHAS |
| PHAS | Select the phase format as the display format. | :CALC 1 1-16\}:FORM PHAS |
| PLOSSLOW | Set the pen speed for plotting to Slow. | Not available (Plotters are not supported.) |
| PLOSFAST | Set the pen speed for plotting to Fast. |  |
| PLOT | Start plotting. |  |
| PLTHNDSHK | Select the handshake mode for the plotter. |  |
| PLTPRTDISK | Select the disk as the plotter port. |  |
| PLTPRTHPIB | Select GPIO as the plotter port. |  |
| PLTPRTPARA | Select the parallel port as the plotter port. |  |
| PLTPRTSERI | Select the serial port as the plotter port. |  |
| PLTTRAUTF | Set the plotter auto feed On/Off. |  |
| PLTTRBAUD | Specify the baud rate for the serial port when using the plotter. |  |
| PLTTRFORF | Send a form feed to the plotter. |  |
| PLTTYPHPGL | Select a PCL5-compatible printer as the plotter type. |  |
| PLTTYPPLTR | Set up the plotter type in the plotter. |  |
| PMTRTTIT | Select the GPIB reading from the power meter as the title. | Not available |
| POIN | Specify the number of points. | :SENS\{1-16\}:SWE:POIN (Cannot be used for editing segments.) |

## Comparing Commands of the 8753ES and E5070B/E5071B

8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| POLA | Select the polar format as the display format. | :CALC $\{1-16\}:$ FORM PLIN <br> :CALC $\{1-16\}:$ FORM PLOG <br> :CALC $\{1-16\}:$ FORM POL <br> (you have to select the marker value reading format <br> also.) |
| POLMLIN | Select LIN as the marker value reading format when using the <br> polar format. | Not available (Selected at the same time the polar <br> format is selected as the data format.) |
| POLMLOG | Select Log as the marker value reading format when using the polar <br> format. | Not available (Selected at the same time the polar <br> format is selected as the data format.) |
| POLMRI | Select Re/Im as the marker value reading format when using the <br> polar format. | Not available (Selected at the same time the polar <br> format is selected as the data format) |
| PORE | Set the port extension On/Off. | Sers |

$\left.\begin{array}{|l|l|l|}\hline \text { 8753ES } & \text { Function overview } & \text { E5070B/E5071B } \\ \hline \text { PRNTYP540 } & \text { Select the HP DeskJet 540/850C as the printer. } & \text { Not available (Printer setup executed by using the } \\ \text { front panel.) }\end{array}\right\}$

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| RESD | Return the list display screen for the measurement results to the normal graph screen. | Not available (List display function not available.) |
| RESPDONE | Calculate the calibration coefficients for the response calibration. | :SENS 1 1-16\}:CORR:COLL:SAVE |
| REST | Interrupt the sweep and start sweeping over again. | Not available |
| REVI | Start measuring the data for reverse isolation of the full 2-port calibration. | :SENS\{1-16\}:CORR:COLL:ISOL |
| REVM | Start measuring the data for reverse match of the full 2-port calibration. | Not available <br> (You do not need to send any start command.) |
| REVT | Start measuring the data for reverse transmission of the full 2-port calibration. |  |
| RFGTLO | Set the signal source frequency to a value greater than LO. | Not available (Mixer measurement function not available.) |
| RFLTLO | Set the signal source frequency to a value smaller than LO. |  |
| RFLP | Select the S11 measurement. | :CALC $\{1-16\}:$ PAR $\{1-16\}:$ DEF S 11 |
| RIGL | Set up the system so the object is output through the plotter onto the lower-right $1 / 4$ of a sheet. | Not available (Entire screen is always output.) |
| RIGU | Set up the system so the object is output through the plotter onto the upper-right $1 / 4$ of a sheet. |  |
| RLIMLINE | Set the ripple limit line display On/Off. | Not available (Ripple test function not available.) |
| RLIMM | Specify the upper limit value for the ripple test. |  |
| RLIMSTP | Specify the frequency band stop value for the ripple test. |  |
| RLIMSTR | Specify the frequency band start value for the ripple test. |  |
| RLIMTEST | Set the ripple test On/Off. |  |
| RLIMVALABS | Set the ripple value display (absolute) On. |  |
| RLIMVALMAR | Set the ripple value display (margin) On. |  |
| RLIMVALOFF | Set the ripple value display Off. |  |
| RSCO | Return the color setup to the initial state. | Not available (Color setup is allowed only for turning highlighting of the entire screen On/Off.) |
| RST | Reset | :SYST:PRES |
|  |  | *RST(Stop sweeping) |
| [ S ] |  |  |
| S11 | Select the S11 measurement. | :CALC $\{1-16\}:$ PAR $\{1-16\}:$ DEF S11 |
| S12 | Select the S12 measurement. | :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ DEF S21 |
| S21 | Select the S21 measurement | :CALC $\{1-16\}: \operatorname{PAR}\{1-16\}:$ DEF S 12 |
| S22 | Select the S22 measurement | :CALC $\{1-16\}$ :PAR $\{1-16\}$ :DEF S22 |
| SADD | Add segments while editing tables. | Not available (Each table is edited using one command; there is no corresponding command.) |
| SAMC | Set the sampler correction On/Off. | Not available |
| SAV1 | Complete the data measurement for 1-port calibration and calculate the calibration coefficients on the basis of the data obtained. | :SENS 1 1-16\}:CORR:COLL:SAVE |
| SAV2 | Complete the data measurement for 2-port calibration and calculate the calibration coefficients on the basis of the data obtained. | :SENS 1 1-16\}:CORR:COLL:SAVE |
| SAVC | Finish writing from the external data to the calibration coefficient array. | Not available (Reading/Writing the calibration coefficient array is not allowed.) |
| SAVE | Save the Instrument State status into the internal register. | :MMEM:STOR |
| SAVECSV | Save the measurement data in CSV format. | :MMEM:STOR:FDAT |
| SAVEJPG | Save the LCD screen image as a JPEG format file. | :MMEM:STOR:IMAG <br> (Stored in Windows ${ }^{\circledR}$ Bitmap format/PNG format.) |
| SAVERC | Complete the data measurement of the forward enhanced response calibration and calculate the calibration coefficients on the basis of the data obtained. | Not available (Enhanced response calibration function not available.) |


| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| SAVEREG | Save the Instrument State status in the internal register. | :MMEM:STOR |
| SAVEUSEK | Save the selected calibration kit as a user calibration kit. | Not available |
| SAVRERC | Complete the data measurement for the reverse enhanced response <br> calibration and calculate the calibration coefficients from the data <br> saved. | Not available (Enhanced response calibration <br> function not available.) |
| SAVT | Complete the data measurement for the TRL*/LRM* 2-port <br> calibration and calculate the calibration coefficients on the basis of <br> the data obtained. | Not available <br> (The E5070B/E5071B supports the TRL calibration <br> function using VBA.) |
| SAVUASCI | Select ASCII as the format for saving data. | Not available (Stored in binary format) |
| SAVUBINA | Select binary as the format for saving data. | Ser |

Comparing Commands of the 8753ES and E5070B/E5071B
8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| SETTIME | Set the time of the internal clock. | :SYST:TIME |
| SETZ | Specify the characteristic impedance of the measurement system. | :CALC\{1-16\}:FSIM:SEND:ZCON:PORT $\{1-4\}: Z$ 0 (Allowed on the fixture simulator) |
| SHOM | Specify the softkey display in the test sequence. | Not available (Test sequence function not available.) |
| SING | Perform one sweep operation. (Single mode) | Not available |
| SLID | Finish measuring a sliding load. | Not available (The LOAD standard is treated as fixed LOAD.) |
| SLIL | In defining calibration kits, select sliding LOAD as the type of LOAD. |  |
| SLIS | Make measurements after sliding the sliding LOAD. |  |
| SLOPE | Specify the power slope value. | :SOUR\{1-16\}:POW:SLOP |
| SLOPO | Set the power slope On/Off. | :SOUR \{1-16\}:POW:SLOP:STAT |
| SM8 | Set the spur avoidance function On/Off (Take4 mode). | Not available (not in Take4 mode) |
| SMIC | Select the Smith chart format as the display format. | :CALC $\{1-16\}:$ FORM SLIN <br> :CALC $\{1-16\}$ :FORM SLOG <br> :CALC $\{1-16\}$ :FORM SCOM <br> :CALC $\{1-16\}$ :FORM SMI <br> :CALC $\{1-16\}$ :FORM SADM <br> (Designate any one of the above commands, and select the marker value read format at the same time.Åj |
| SMIMGB | Select $\mathrm{G}+\mathrm{jB}$ as the marker value read format when using the Smith chart format. | Not available (Selected at the same time the Smith chart format is selected as the data format ) |
| SMIMLIN | Select LIN as the marker value read format when using the Smith chart format. |  |
| SMIMLOG | Select LOG as the marker value read format when using the Smith chart format. |  |
| SMIMRI | Select $\mathrm{Re} / \mathrm{Im}$ as the marker value read format when using the Smith chart format. |  |
| SMIMRX | Select $\mathrm{R}+\mathrm{j} \mathrm{X}$ as the marker value read format when using the Smith chart format. |  |
| SMOOAPER | Specify the smoothing aperture. | :CALC 1 1-16\}:SMO:APER |
| SMOOO | Set the smoothing On/Off. | :CALC 1 1-16\}:SMO |
| SOFR | Display the firmware version on the screen. | Not available |
| SOFT 1 1-8\} | Perform the same processing as pressing the designated softkey. | Not available |
| SOUP | Set the signal source output On/Off. | Not available (Always On) |
| SPAN | Specify the span value of the sweep range. | :SENS\{1-16\}:FREQ:SPAN <br> (Cannot be used for editing segments.) :SOUR $\{1-16\}:$ POW:SPAN |
| SPECFWDM | In defining calibration kits, specify the standard for forward match. | :SENS\{1-16\}:CORR:COLL:CKIT:ORD:THRU <br> (Definition of the Thru calibration class) Registering the Thru standard as the calibration class is equivalent to registering one standard in all calibration classes necessary for the thru measurement of full 2-port calibration on the 8753ES. |
| SPECFWDT | In defining calibration kits, specify the standard for forward transmission. |  |
| SPECRESP | In defining calibration kits, specify the standard for response. | Not available (In the response measurement, the standards defined in the calibration classes of OPEN, SHORT, LOAD, and THRU are used. <br> Therefore, a calibration class for response does not exist.) |
| SPECRESI | In defining calibration kits, specify the standard for response (response \& isolation). |  |

$\left.\begin{array}{|l|l|l|}\hline \text { 8753ES } & \text { Function overview } & \text { E5070B/E5071B } \\ \hline \text { SPECREVM } & \text { In defining calibration kits, designate a standard for reverse match. } & \text { :SENS }\{1 \text { 1-16 }\} \text { :CORR:COLL:CKIT:ORD:THRU } \\ \text { (Definition of the Thru calibration class) } \\ \text { Registering the Thru standard as the calibration } \\ \text { class is equivalent to registering one standard in all } \\ \text { calibration classes necessary for the thru } \\ \text { measurement of full 2-port calibration on the } \\ \text { 8753ES. }\end{array}\right\}$

## Comparing Commands of the 8753ES and E5070B/E5071B

8753ES vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| STANA | Execute measurement of the standard displayed in the first softkey from the top. | Not available (No command for this is available because only one standard can be registered in each calibration class.) |
| STANB | Execute measurement of the standard displayed in the second softkey from the top. |  |
| STANC | Execute measurement of the standard displayed in the third softkey from the top. |  |
| STAND | Execute measurement of the standard displayed in the fourth softkey from the top. |  |
| STANE | Execute measurement of the standard displayed in the fifth softkey from the top. |  |
| STANF | Execute measurement of the standard displayed in the sixth softkey from the top. |  |
| STANG | Execute measurement of the standard displayed in the seventh softkey from the top. |  |
| STAR | Specify the start value of the sweep range. | :SENS $\{1-16\}$ :FREQ:STAR <br> (Cannot be used for editing segments.) :SOUR \{1-16\}:POW:STAR |
| STB? | Read the value of the status byte register. | *STB? |
| STDD | In defining calibration kits, complete the defining job for each standard. | Not available (Takes effect automatically upon sending the setup command.) |
| STDTARBI | Select Arbitrary Impedance as the type of standard being defined. | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:STAN }\{1-21\}: T \\ & \text { YPE ARBI } \end{aligned}$ |
| STDTDELA | Select Delay/Thru as the type of standard being defined. | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:STAN }\{1-21\}: T \\ & \text { YPE THRU } \end{aligned}$ |
| STDTLOAD | Select LOAD as the type of standard being defined. | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:STAN }\{1-21\}: T \\ & \text { YPE LOAD } \end{aligned}$ |
| STDTOPEN | Select OPEN as the type of standard being defined. | $\begin{aligned} & \text { :SENS\{1-16\}:CORR:COLL:CKIT:STAN }\{1-21\}: T \\ & \text { YPE OPEN } \end{aligned}$ |
| STDTSHOR | Select SHORT as the type of standard being defined. | :SENS $\{1-16\}:$ CORR:COLL:CKIT:STAN $\{1-21\}: T$ YPE SHOR |
| STOP | Specify the stop value of the sweep range. | :SENS $\{1-16\}$ :FREQ:STOP <br> (Cannot be used for editing segments.) :SOUR \{1-16\}:POW:STOP |
| STOR | Save the Instrument State status to the file. | :MMEM:STOR |
| STORSEQ | Save the test sequence to the file. | Not available (Test sequence function not available.) |
| STPSIZE | Specify the sweep step values between points in the segment. | Not available |
| SVCO | Save the color setup for the LCD screen. | Not available (No function available that saves the setup for colors only.) |
| SWEA | Automatically sets the sweep time to the shortest possible. | :SENS\{1-16\}:SWE:TIME:AUTO ON |
| SWET | Specify the sweep time. | :SENS 1 1-16\}:SWE:TIME |
| SWPSTART | Initialize the sweep (in connection with Take4). | Not available (Take4 mode not available.) |
| SWR | Select the SWR format as the display format. | :CALC 1 1-16\}:FORM SWR |
| [ T ] |  |  |
| TAKCS | Start the sweep to acquire the data for the power meter calibration. | :SOUR \{1-16\}:POW:PORT $11-4\}$ :CORR:COLL |
| TAKRS | Start the sweep to acquire the data for the receiver calibration. | Not available |
| TAKE4 | Set the system to the Take4 mode. | Not available (Take4 mode not available.) |
| TALKLIST | Select the talker/listener mode. | Not available (Can be set up from the front panel.) |
| TERI | Specify the terminal impedance when defining standards. | $\begin{aligned} & \text { :SENS }\{1-16\}: \text { CORR:COLL:CKIT:STAN }\{1-21\}: A \\ & \text { RB } \end{aligned}$ |
| TESS? | Check to see if the test set is connected. | Not available (Test set cannot be used.) |


| 8753ES | Function overview | E5070B/E5071B |
| :---: | :---: | :---: |
| TIMDTRAN | Set the time-domain transformation On/Off. | :CALC 1 1-16\}:TRAN:TIME:STAT |
| TIMESTAM | Set the output time stamp from the printer/plotter On/Off. | Not available (Printed image include the timestamp because LCD always display it). |
| TINT | Specify the hue of the display color for the selected item. | Not available (Color setup is allowed only for turning highlighting of the entire screen $\mathrm{On} / \mathrm{Off}$.) |
| TITF | Assign a file name to the file for saving. | Not available (Assigned when saved) |
| TITL | Assign a title to the LCD screen. | :DISP:WIND 1 1-16\}:TITL:DATA |
| TITP | Assign a file name to the file that receives plot output. | Not available (Plot output to a file is not allowed.) |
| TITR | Assign a name to the register for Save/Recall. | Not available (Register for Save/Recall not available.) |
| TITREG | Assign a name to the register for Save/Recall. |  |
| TITSEQ | Name the test sequence. | Not available (Test sequence function not available.) |
| TITSQ | Display the softkey for naming the test sequence. |  |
| TITTMEM | Send the title to the memory trace. | Not available |
| TITTPERI | Send the title to the GPIBaddresses of the peripherals. | Not available |
| TITTPMTR | Send the title to the GPIBaddress of the power meter. | Not available |
| TITTPRIN | Send the title to the GPIB address of the printer. | Not available |
| TRACK | Set the search tracking function On/Off. | :CALC $\{1-16\}$ :MARK $\{1-10\}$ :FUNC:TRAC |
| TRAD | Complete measuring the data to be transmitted on full 2-port calibration or enhanced response calibration. | Not available ( Enhanced response calibration function not available.) |
| TRAN | Start measuring the data to be transmitted on full 2-port calibration or enhanced response calibration. | Not available (Enhanced response calibration function not available.) |
| TRAOP | Start measuring the data to be transmitted on the one-bus 2-port calibration. | Not available (One-bus 2-port calibration function not available.) |
| TRAP | Select the S21 measurement. | :CALC $\{1-16\}$ :PAR 1 1-16\}:DEF S21 |
| TRLL1 | In measuring the data on TRL*/LRM* 2-port calibration, measure the data on Line/Match of port 1. | Not available (The E5070B/E5071B supports the TRL calibration function using VBA.) |
| TRLL2 | In measuring the data on TRL*/LRM* 2-port calibration, measure the data on Line/Match of port 2. |  |
| TRLR1 | In measuring the data on TRL*/LRM* 2-port calibration, measure the data on S 11 reflection. |  |
| TRLR2 | In measuring the data on TRL*/LRM* 2-port calibration, measure the data on S22 reflection. |  |
| TRLT | In measuring the data on TRL*/LRM* 2-port calibration, measure the data on THRU. |  |
| TSSWI | Specify the number of sweep operations in switch changeover in the test set. | Not available (Always continuous) |
| TST? | Perform the self-test and read the results of the test. | Not available |
| TSTIOFWD | Specify the bit in the test set in which the forward attenuator is set up. | Not available |
| TSTIOREV | Specify the bit in the test set in which the reverse attenuator is set up. |  |
| TSTP | Select the port to be used when S-parameters are not measured. | Not available (Only S-parameters can be selected.) |
| TTLHPULS | Set up the system so that the pulse from Low to High can be output to TTL when sweep operations are finished. | Not available |
| TTLLPULS | Set up the system so that the pulse from High to Low can be output to TTL when sweep operations are finished. |  |
| TTLOH | Always set TTL output to High. |  |
| TTLOL | Always set TTL output to Low. |  |
| [ U ] |  |  |

Comparing Commands of the 8753ES and E5070B/E5071B
$8753 E S$ vs. E5070B/E5071B Command Comparison (8753ES-only commands excluded)

| 8753ES | Function overview | E5070B/E5071B |
| :--- | :--- | :--- |
| UCONV | Select the Up conversion in the mixer measurement. | Not available (Mixer measurement function not <br> available.) |
| UP | Perform the same processing as pressing the [ $\uparrow$ ]key. | Not available |
| USEPASC | Select the pass control mode. | Not available (Cannot be set in pass control mode.) |
| USESENSA | Select A as the sensor for the power meter. | Not available |
| USESENSB | Select B as the sensor for the power meter. | :SENS $\{1-16\}:$ CORR:RVEL:COAX |
| [ V ] | Specify the velocity factor of the transmission line. | Not available (Mixer measurement function not |
| VELOFACT | Display the mixer measurement setup on the LCD screen. |  |
| VIEMOFF | Display the traces of the mixer measurement on the LCD screen. |  |

